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Abstract

Post-failure behavior of rocks and rock masses has not been widely studied in rock
engineering, partly by the inherent difficulties in obtaining reliable results and partly because the
engineering objective usually is avoiding failure. Nevertheless, there are some applications that
require to know the parameters governing this behavior.

Following Farmer (1983) indications, the press of the John P. Harrison Rock Mechanics’
Laboratory of the University of Vigo was modified in order to not only controlling axial force,
but also the confining stress and to measure the volumetric strain of the specimen during triaxial
tests.

Using this fully servo-controlled press, eight different rocks were tested under unconfined and
confined conditions (a total of more than 200 strength tests) reaching, when possible, the residual
strength. Furthermore, the tests were performed with unloading-reloading cycles in order to
control the softening phase and to obtain the irrecoverable strain locus, which allows to
distinguish the elastic and plastic components of the axial and volumetric strains of the specimen.

With the data obtained from the tests and using the formulation proposed by Vermeer & De
Borst (1984), the evolution of the dilation angle during the tests was captured. The dilation angle
is the most suitable parameter to model the dilatant behavior of a material and one of the required
parameters in order to simulate the post-failure behavior of rocks and rock masses. The obtained
dilation angles were fitted to the current variable dilation angle models (Alejano & Alonso, 2005;
Zhao & Cai, 2010a) revealing the models’ strengths and weaknesses and confirming this
parameter dependencies (plasticity and confining stress).

Later, and accounting for the fact that the dilation angle also presents scale —and/or
structure— dependence (Alejano & Alonso, 2005), the scale problem was addressed in a novel
way: artificially jointed specimens (22 specimens) of one of the previously studied rocks were
created and tested: the specimens had two joint sets (a sub-horizontal set with two discontinuities
and a sub-vertical set with one discontinuity each specimen). The results of the tests are quite
relevant and show very marked trends —with respect to the intact specimens—, peak strength,
Young’s modulus, drop modulus and peak dilation angle diminishes. Meanwhile, Poisson’s ratio
and residual strength do not show any relevant change.

Aimed to confirm the observed trends, a new set of jointed specimens were made and tested
(20 specimens). These specimens had the same joint sets, but they were more densely fractured
(three sub-horizontal discontinuities and two sub-vertical discontinuities each specimen). The
results of the tests confirmed the previously observed trends. The dilation angle results of these
tests, in addition, were fitted to a novel variable dilation angle model (Walton & Diederichs,
2015a).

In order to characterize post-failure behavior of rocks and rock masses, it is also required (in
addition to the dilation angle) a model that links the plastic strains with the stresses after peak (an
evolving failure criterion between peak and residual strength). Following an empirical approach,
a mathematical equation was fitted to pairs of points of stress and plastic axial strain obtained for
each test before, during and after the softening phase. Combining this stress-softening model with
the variable dilation angle model, allowed to simulate the dilatant softening behavior of the tested
rocks.

Finally and aimed to illustrate the differences of considering or not considering variable
dilatancy when modelling rock masses, a numerical model of a deep tunnel was created and run
using different post-failure behaviors, noting the differences between the models.

KEYWORDS: Rock mechanics, strength testing, geo-mechanical characterization,
structure-scale, post-failure, dilation.
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Resumen

El comportamiento post-rotura de rocas y macizos rocosos no ha sido muy estudiado en el
campo de la ingenieria de rocas, en parte por la dificultad para obtener resultados fiables y en
parte porque el trabajo del ingeniero suele ser prevenir la rotura. Sin embargo, para ciertas
aplicaciones, es necesario obtener, o al menos estimar de la mejor manera posible, los parametros
que gobiernan este comportamiento.

Siguiendo las indicaciones de Farmer (1983), se modifico la prensa existente en el Laboratorio
de Mecanica de Rocas John P. Harrison de la Universidad de Vigo, de forma que se pudiera no
solo controlar la carga axial, sino también la presion de confinamiento en los ensayos triaxiales y
medir a la vez la deformacion volumétrica de la probeta durante el ensayo.

Se realizaron ensayos con esta prensa completamente servo-controlada usando ocho rocas
diferentes (mas de 200 ensayos de compresion en total) de forma que se alcanzara el estado
residual siempre que fuera posible. Ademas se realizaron los ensayos con ciclos de descarga y
recarga, de forma que se controlara la transicion desde la resistencia de pico hasta la resistencia
residual y también se pudiera obtener el denominado lugar geométrico de las deformaciones
irreversibles, que permite la diferenciacion de las componentes elasticas y plasticas de las
deformaciones axial y volumétrica de la probeta.

Con los datos de tension y deformacion de los ensayos y aplicando la formulacion propuesta
por Vermeer y De Borst (1984), se obtuvo la evolucidon del angulo de dilatancia durante los
ensayos. El angulo de dilatancia es el parametro mas adecuado para modelizar el comportamiento
dilatante de la roca y uno de los parametros necesarios para simular el comportamiento post-
rotura. El angulo de dilatancia asi obtenido para todos los ensayos se ajustd a los modelos de
dilatancia variable existentes (Alejano y Alonso, 2005; Zhao y Cai, 2010a), descubriendo las
debilidades y fortalezas de cada modelo y confirmando las dependencias de este parametro (nivel
de plastificacion y presion de confinamiento).

En una etapa posterior y sabiendo que el angulo de dilatancia también depende de la escala —
y/o de la estructura— (Alejano y Alonso, 2005), se abord6 el problema de la escala de una forma
novedosa: se crearon probetas (22 probetas) de una de las rocas estudiadas previamente,
atravesadas por dos familias de discontinuidades (una familia sub-horizontal, con dos
discontinuidades y una familia sub-vertical con una discontinuidad). Estas probetas diaclasadas
se ensayaron siguiendo la metodologia anterior y se obtuvieron resultados muy relevantes que
muestran tendencias marcadas —respecto a las probetas intactas— de disminucion de la
resistencia de pico, del médulo de Young, del médulo de descarga y del angulo de dilatancia de
pico, mientras que el coeficiente de Poisson y la resistencia residual no parecen verse afectados
significativamente.

Con el objetivo de confirmar las tendencias observadas en las probetas diaclasadas, se crearon
probetas con las mismas familias de discontinuidades pero con mayor densidad de fracturacion
(tres discontinuidades en la familia sub-horizontal y dos discontinuidades en la familia sub-
vertical). Estas probetas (20 probetas mas) se ensayaron siguiendo la misma metodologia y se
confirmaron los resultados obtenidos en la etapa anterior. Para estas probetas, ademas se ajusto
un modelo de dilatancia variable recientemente propuesto (Walton y Diederichs, 2015a).

Para caracterizar el comportamiento post-rotura de las rocas es necesario, ademas de un
parametro que modele el comportamiento dilatante del material (el angulo de dilatancia), otro
modelo que ligue las deformaciones con la resistencia en esta etapa, es decir, un criterio de rotura
evolutivo desde la resistencia de pico hasta la residual. Siguiendo un enfoque empirico, se ajusto
una ecuacion matematica a pares de puntos de tension y deformacion plastica obtenidos para cada
ensayo antes, durante y después de la fase de reblandecimiento. La combinacion de este modelo
de la evolucion de la relacion entre tension y deformacion plastica con el modelo de dilatancia
variable, permitio simular el comportamiento dilatante con reblandecimiento de las rocas intactas
estudiadas.
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Finalmente, para ilustrar las diferencias entre considerar o no una dilatancia variable, se cred
un modelo numérico de un tunel profundo y se ejecutd con diferentes comportamientos post-
rotura, observando las diferencias entre ellos.

PALABRAS CLAVE: Mecanica de rocas, ensayos de resistencia, caracterizacion
geomecanica, escala-estructura, post-rotura, dilatancia.
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Extended abstract

Excavation in rock masses has developed during last years a boom, primarily due to improved
technology, excavation equipment and treatment processes. Examples of major projects are found
in Galicia with the works of the AVE (Spanish high speed trains), which are burrowing our
mountains with tunnels to deal with our whimsical terrain; in the Swiss Alps with the construction
of the Gotthard Base Tunnel; large underground mines as some large projects in South America
or open pit mines such as Bingham Canyon in the United States. Also urban use of underground
space is being promoted; this promotion mainly begins in the coldest countries (Northern Europe)
where the existing rock beneath cities presents good quality, or in countries with limited surface
space (Japan). It is also necessary to use underground space when discussing physics laboratories
such as CERN, a particle accelerator in Switzerland, or the U.S. Fermilab.

In addition to the excavation of the rock mass, sometimes it is only necessary to fracture the
rock mass to obtain an improvement of the properties needed for a purpose, for instance, in the
case of oil and gas, to cause fracturing of the rock to enhance the conductive capacity of the rock
mass is a common practice, and thus obtain a higher output in less time; or, in the case of caving
mining methods, it is required that the rock flows into the draw point, so it is necessary for the
rock mass being sufficiently fractured.

One may realize that the best way to excavate or to fracture the rock mass is to best know its
behavior under the conditions —particularly the stress state— in which the rock mass will be.
This task is easy to say, but it is difficult to perform due primarily, but not only, to the natural
heterogeneity of the rock mass. It should be noted here that a rock mass is a three-dimensional set
or net of rock blocks crossed by geological discontinuities of different origin, so the rock mass
behavior depends not only on the constituting rock, but also on the discontinuities that intersect
it. Both constituents also not always behave in the same way, as there will be areas of rock that
have suffered certain phenomena (weathering, metamorphism, diagenesis, failures...) that may
have modified their properties locally and do not have affected nearby areas.

Since the early rock mechanics developments in the 60°s — 70’s of the last century, much effort
has been expended to studying and modelling the elastic or prior-to-failure behavior of rock
masses and, thus, there are models that reasonably represent the actual pre-failure behavior of
rock masses. However, the post-failure behavior has been much less studied, due to the inherent
difficulties of such study and because the primary objective of an engineer is typically to avoid
failure. However, as it has already been discussed in previous paragraphs, the fracturing of the
rock mass is a requirement for some applications in the mining industry, and even knowing how
the rock mass in the plastic state ("broken") will behave is a key design factor in the prediction of
the correct installation moment (distance to the face) for the support in a tunnel. This knowledge
of post-failure rock mass behavior can also be a key when analyzing broken pillars in underground
mines and proposing corrective measures.

To fully characterize a rock mass (regardless of whether their behavior is elastic-brittle, strain-
softening or elastic-perfectly-plastic) one must know the elastic parameters (Young's modulus
and Poisson's ratio), the peak failure criterion (typically Hoek-Brown or Mohr-Coulomb), the
residual failure criterion (which has the same form as the peak failure criterion but different
parameters), the evolving failure criterion from peak to residual state, the post-failure parameters
linking the relationship between stress and strain and the post-failure relationship between strains.
A correct characterization of post-fracture behavior can be achieved if one knows, for instance,
(a) the dilation angle and the drop modulus (the slope of the axial stress-axial strain curve during
softening) or (b) the dilation angle and the plastic parameter values for which dilatancy and
evolving failure criterion are achieved.

This dissertation aims to improve our understanding of post-failure behavior of rock masses.
Since the in situ deformability tests of rock masses are often unaffordable for various reasons (the
scale of the needed equipment; the difficulty in isolating the factors that influence the outcome;
or the high cost, just to mention a few), it is necessary to resort to laboratory testing, where one
can more easily control the variables that come into play. Yet there are inherent difficulties in the
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study of post-failure behavior of rocks that need to be addressed when proposing an experimental
program:

A sufficiently large number of samples are needed to obtain a reliable result. The process of
obtaining and preparing the specimens is long and must be done accurately to meet current
regulations (UNE in Spain, derived from the methods suggested by the ISRM, 2007).

The press should be stiffer than the tested rock in order to be able to control and to record the
transition from peak to residual strength. In the opposite case (the tested rock is stiffer than the
press) the specimen will abruptly or explosively fail, making it impossible to collect reliable data
on the post-failure phase.

After this required stiffness, appropriate servo-control for regulating the force exerted by the
press on the specimen during the test is needed, just to, again, have control over the softening
process between peak and residual strength.

The sensors used to measure the strains during the test should be accurate enough for the
necessary appreciation (between thousandths and tenths of a millimeter) and a sufficiently broad
range of measure to capture the deformations in the residual state. The latter precludes the use of
strain gauges due to their limited range of measurement, as well as other problems associated with
their use, such as the inability to capture localized strain (shear bands).

Since strain gauges cannot be used, it becomes impossible to measure the radial strain of the
specimen in triaxial tests without a specifically adapted Hoek’s cell, because no measuring
devices may be coupled within a standard triaxial cell. So it becomes necessary to measure the
amount of fluid that must be entered or removed from the triaxial cell to maintain the confining
pressure during such tests. This amount of displaced fluid can be related to the volumetric strain
of the specimen and thus, using both the volumetric and the axial deformation, one can obtain the
radial strain. Therefore, it is also necessary to have control over the confining pressure and to be
able to measure the amount of fluid displaced, so one needs a new servo-control for this aspect.

The further processing of the data collected during the tests requires the identification of the
elastic (or reversible) and plastic (or irreversible) components of the strains. While this distinction
between elastic and plastic deformation is theoretically simplistic, as it does not consider inelastic
phenomena (neither elastic nor plastic in the yield sense), or the defects (micro-cracks, pores...)
initial closure —that gives the initial concave shape to the axial stress-axial strain curve—, it is
valid for the level of detail in which the research of post failure behavior of rocks and rock masses
is. The approach used in this Ph.D. thesis is sufficient, since it is assumed that the plastic strain
does not begin until it reaches the stress level called Crack Damage.

To make this distinction between elastic and plastic strains is advisable to perform unloading-
reloading cycles during the tests, especially in the softening and residual phases. These cycles
allow to obtain the locus known as irrecoverable strain locus, thanks to which one can get one of
the most relevant parameters of the post-failure behavior of a rock or a rock mass, the dilation
angle, . These cycles will also help to control and record the transition from peak to residual
strength.

Still speaking of data processing, note that it is not an easy task and it is also difficult to
automate because of the natural variability of the tests results. This process involves not-so-logical
decisions that a computer is not always able to consider, so that each of the tests must be analyzed
carefully. Moreover, the automation of the process may present some associated loss of control
and monitoring of the data that can lead to errors difficult to detect.

All these reasons make the process of obtaining real data from post-failure behavior long and
costly, if one also adds the already commented thought that the engineer must avoid failure, it is
not difficult to understand the lack of data related to post-failure behavior of rocks and rock
masses. However, over the years, as the underground excavations have grown in size and
numerical simulations are becoming increasingly important, easily available and realistic, it has
been shown that it is necessary to know the post-failure behavior of rocks and rock masses in
order to understand the mechanisms that take place, and achieve the objective of the simulation
in rock mechanics, which is simply to represent as closely as possible the actual behavior of a
rock mass under certain conditions.
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In order to deepen on our knowledge of the post-failure behavior of rocks, this Ph.D. thesis
initially proposed an experimental programme aimed at obtaining dilation angle in rocks from
laboratory tests (Chapters 3 and 4). More than 200 unconfined and confined strength tests were
performed on specimens from eight different rocks. These tests included the previously mentioned
unloading-reloading cycles in order to be able to identify the plastic strains that are necessary to
calculate the dilation angle.

Complete stress-strain curves of each of these tests were obtained. The most relevant
parameters needed to fully characterize the behavior of the rock were also computed for each test:
Young's modulus and Poisson's ratio, peak and residual strength (the latter only when possible, it
is known that the residual strength of an unconfined strength tests is usually null), drop modulus
(also when it was possible) and the evolution of the dilation angle with increasing strain.

From these individual data, the evolution of the parameters with confining pressure was
studied, showing the already known relationships, namely, with increasing pressure confinement,
the Young's modulus, the peak strength and the residual strength increase, while Poisson's ratio
does not seem to be affected and the drop modulus is reduced (the rock becomes more ductile).

Besides, the most used failure criteria in rock mechanics (Hoek-Brown and Mohr-Coulomb)
were fitted to strength results, obtaining very good fits in both cases. Note that using the
generalized Hoek-Brown criterion (Hoek et al., 2002) to fit the results of residual strength
significantly improved the fit.

Finally in this part, after obtaining the evolution of the dilation angle with the strain for each
test, all the data obtained for this parameter were pooled, thus revealing dependencies as targeted
by Alejano & Alonso (2005), namely, the dilation angle decreases with increasing confining
pressure and decreases with increasing plastic strain.

The obtained dilation angle was fitted to the existing models of evolution of this parameter.
The first one (Alejano & Alonso, 2005), although very easy to implement, was not able to recover
the peak dilation angle observed in the tests, though it reasonably captured the evolution of the
dilation angle with the plastic strain. The second model (Zhao & Cai, 2010a) fitted the data fairly
well and the behavior of the dilation angle was precisely captured. However, this model involves
many difficulties due to the nine parameters with difficult physical correlation that are necessary
to obtain, so its application to everyday engineer work is questionable.

Alejano & Alonso (2005) also noted that the dilation angle should also depend on the scale.
The problem of scale in rock mechanics, although known, is not fully solved and this is due, again,
to the natural variability of the material with which it works and to the fact that increasing the
scale, the number of existing imperfections (pores, inhomogeneities, micro-cracks ...) in the
sample also increases. This dissertation has attempted to address the problem of scale (chapters 5
and 6) creating two series of rock specimens crossed by two artificial joint sets (the first series of
specimens had two sub-horizontal and one sub-vertical joint, and the second series had three sub-
horizontal and two sub-vertical joints). Cutting and preparing these specimens was not simple:
some previous tests were needed before reaching a methodology to obtain and test jointed
specimens with a reasonably degree of quality.

22 and 20 of these "small-scale rock masses" were got from one of the previously studied rocks
and triaxial compression strength tests were performed. It should be noted that due to the
characteristics of the specimens, it was neither possible to perform unconfined compression
strength nor indirect tensile (Brazilian) tests. And although these specimens could reach some
strength in these conditions, these values would be very small compared to the triaxial strength
values obtained, so they could reasonably be assumed zero.

The same procedures as in the previous chapters were followed for the most relevant
parameters. The results obtained were compared again with the confining pressure, revealing the
same dependencies explained before. But results were also compared with those of the intact
specimens previously obtained, revealing very interesting trends.

The Young's modulus of the jointed specimens is significantly reduced compared to the intact
specimens, which is logical if one takes into account the lower stiffness of the discontinuities
relative to the rock matrix. In addition, it is the expected/observed behavior when the stiffness of
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the rock is compared to that of the rock mass. It was also revealed that the Young's modulus grows
with confining pressure, but it does not do it linearly as hitherto believed, but rather it is a
logarithmic relationship: there is a strong increase of Young's modulus for small initial increments
of confining stress and then, for successive increments of confining stresses, the growth slows
down.

Poisson's ratio hardly changed its value (0.16 in intact specimens to 0.16 and 0.19 in jointed
specimens) so it seems reasonable to think that the general approach —in which, for good quality
rock masses, one can consider the same Poisson's ratio as for the rock— is reasonably realistic.

The peak strength of the jointed specimens is smaller than that of the intact specimens, but it
should be noted that the difference between these two values decreases with increasing confining
pressure.

The residual strength is the same in both types of samples (considering the level of variability
that occurs in rock mechanics). Not only this fact is important, but also the stress-strain curves of
the jointed samples tend to mimic the behavior of intact specimens at some level of strain after
the peak, both reaching the residual state approximately in the same values of strain. An
explanation of this fact in terms of energy could be very interesting: it is possible that the energy
used in cutting the joints of the specimens is equal to the energy difference between the two
curves.

The drop modulus again showed its dependence on confining pressure and turned out to be
lower in jointed specimens than in intact specimens, the same explanation that for the case of
Young's modulus could be valid here.

Finally, in this part of the study, the dilation angle values were fitted to the mobilized dilation
angle model by Zhao & Cai (2010a) and the last series of jointed specimens to the new proposed
dilatancy model by Walton & Diederichs (2015a) and compared to the model previously obtained
for intact specimens. This parameter showed its dependence on degree of fracturing (or scale)
resulting in smaller dilation angles for the jointed specimens than for the intact ones at small
confining pressures, but with the gap between both specimens gradually falling and reaching the
same dilation angles obtained with intact specimens for confining pressures from 6 MPa onwards.
Note that where the dilatant behavior of rock masses may have significance for the engineering
works is on the free sides of an excavation —i.e. where the confining stresses are small— so that
this discovery in the dilation angle difference between intact and jointed specimens at small
confining pressures has a relevant impact on rock engineering.

Although the dilation angle is an important parameter in the post-failure behavior of rocks and
rock masses, itself alone is not able to define this behavior, so hereafter (chapter 7) a model able
to represent the strain-softening behavior is proposed. For this purpose —from the stress-strain
curves of the first tests carried out on the three granitic rocks— the relations between the stresses
and the plastic strains before, during and after the softening phase (transition from peak to residual
strength) were obtained. Subsequently an empirical approach was applied and a mathematical
equation was fitted to the pairs of points obtained (stress and plastic strain). Combining this model
of evolution of the relationship between stresses and plastic strains with the mobilized dilation
angle model previously fitted, allowed the author to simulate the dilatant softening behavior of
the studied rocks. While there are still differences between the model and actual behavior, the
obtained approach is much better than existing models.

Finally (chapter 8), to illustrate the differences between considering or not a variable dilatancy,
a numerical model of a deep tunnel was created and different situations were compared by
considering three rock mass qualities (three different post-failure behavior) with both a constant
and a variable dilation angle approaches. The results show that for average rock masses (those
presenting strain-softening behavior) the consideration of a variable dilation angle increases
calculated strains on the face and walls of the tunnel, while it does not seem to affect the extent
of the yielded zone.
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Resumen extendido

La excavacion en macizos rocosos ha venido desarrollando en lo Gltimos afios un auge debido
principalmente al desarrollo economico de los paises emergentes, a la mejora en las tecnologias
y el equipamiento de excavacion y a los procesos de tratamiento. Ejemplos de grandes proyectos
los encontramos en Galicia con las obras del AVE (Alta Velocidad Espaiola), que estan
horadando nuestras montafias con tineles para hacer frente a nuestra caprichosa orografia; en los
Alpes Suizos con la construccion del tunel base de San Gotardo; grandes minas subterraneas como
algunos grandes proyectos en Sudamérica o en superficie como la de Bingham Canyon en Estados
Unidos. Ademas se estd impulsando un uso urbano de los espacios subterraneos, este impulso
parte principalmente de los paises mas frios (Norte de Europa) donde la roca existente bajo las
ciudades es de buena calidad o de los paises con poco espacio disponible en superficie como
Japon. También es necesario recurrir al espacio subterraneo cuando se habla de laboratorios de
fisica, como los aceleradores de particulas del CERN en Suiza o el del Fermilab en EEUU.

Ademas de la excavacion propiamente dicha del macizo rocoso, a veces solo es necesario
fracturar el macizo rocoso para obtener una mejora de las propiedades necesarias para un fin, por
ejemplo, en el caso de la industria del petrdleo y el gas, es comun provocar la fracturacion de la
roca para mejorar la capacidad conductiva del macizo rocoso y obtener asi una mayor produccion
en menor tiempo; o, en el caso de los métodos mineros por hundimiento, se hace necesario que la
roca fluya hacia los coladeros, por lo que es necesario que el macizo rocoso esté suficientemente
fracturado.

La mejor forma de conseguir esa excavacion o fracturacion del macizo rocoso es conociendo
lo mejor posible su comportamiento bajo las condiciones —particularmente las condiciones
tensionales— en las que se va a encontrar. Esta tarea, facil de teorizar, es complicada de llevar a
cabo en la practica debido principalmente, pero no solo, a la heterogeneidad natural de los macizos
rocosos. Conviene sefialar aqui que un macizo rocoso es un conjunto o entramado tridimensional
de bloques de roca surcado por discontinuidades geologicas de diverso origen, por lo que el
comportamiento del macizo rocoso dependerd no sélo de la roca que lo forma, sino también de
las discontinuidades que la cruzan. Ambos constituyentes, ademas, tampoco se comportaran
siempre de la misma forma, pues habrd zonas de roca que hayan sufrido ciertos fendémenos
(meteorizacion, metamorfismo, diagénesis, fallas...) que pueden haber modificado sus
propiedades localmente, pero no necesariamente en zonas cercanas.

Desde los inicios del desarrollo de la mecanica de rocas en los afios 60-70 del siglo pasado se
ha dedicado mucho esfuerzo al estudio y modelizacion del comportamiento elastico o previo a la
rotura y asi es que existen modelos que representan de forma razonablemente aproximada el
comportamiento real de los macizos rocosos. Sin embargo, el comportamiento de lo que ocurre
después de la rotura ha sido mucho menos estudiado, debido a la dificultad de dicho estudio y a
que el objetivo principal de un ingeniero suele ser evitar la rotura. Sin embargo ya se ha
comentado en parrafos anteriores que la fracturacion del macizo rocoso es un requerimiento para
algunas aplicaciones de la industria minera e incluso saber como se comportara el macizo rocoso
en estado plastico (“roto”) es un factor de disefio clave en la prediccion del momento (distancia
al frente) de instalacion de sostenimiento en un tinel. Este conocimiento del comportamiento
post-rotura del macizo rocoso también puede ser clave a la hora de analizar roturas de pilares en
minas subterraneas y proponer medidas correctoras.

Para caracterizar completamente un macizo rocoso (independientemente de que su
comportamiento sea elasto-fragil, elasto-plastico con reblandecimiento o elasto-plastico perfecto)
uno debe conocer los parametros elasticos (mddulo de Young y coeficiente de Poisson), el criterio
de rotura de pico (Hoek-Brown o Mohr-Coulomb tipicamente), el criterio de rotura residual (que
tendra la misma forma que el criterio de rotura de pico pero diferentes parametros), el criterio de
rotura evolutivo desde el de pico hasta el residual, los parametros que ligan la relacion entre
tension y deformacion en post-rotura y la relacion entre las deformaciones también en post-rotura.
Se puede conseguir una caracterizacion correcta del comportamiento post-rotura si se conoce, por
ejemplo, (a) el angulo de dilatancia y el modulo de descarga (la pendiente de la fase de
reblandecimiento en la curva tension axial-deformacion axial) o (b) el angulo de dilatancia y los

XiX



valores del parametro plastico considerado (que es una forma de medir la deformacion plastica
alcanzada) para los que se ha obtenido el angulo de dilatancia y el criterio de rotura evolutivo.

Este trabajo de tesis intenta mejorar nuestro conocimiento del comportamiento post-rotura de
los macizos rocosos. Dado que los ensayos tenso-deformacionales in situ de macizos rocosos
suelen ser inabordables por varios motivos (la escala del equipamiento necesario; la dificultad en
aislar los factores que influyen al resultado; o el elevado coste por citar algunos de ellos), es
necesario recurrir al ensayo en laboratorio, donde se pueden controlar mas facilmente las variables
que entran en juego. Aun asi existen dificultades inherentes al estudio del comportamiento post-
rotura de las rocas que es necesario afrontar a la hora de proponer un programa experimental:

Son necesarias un numero suficientemente grande de probetas para obtener un resultado
representativo y fiable. El proceso de obtencion y preparacion de estas probetas es largo y debe
ser realizado con precision para cumplir la normativa vigente (UNE en Espafa, derivada de los
métodos sugeridos por la ISRM, 2007).

La prensa debe tener mayor rigidez que la roca ensayada, para poder controlar y registrar el
proceso de transicion desde la resistencia de pico a la residual, en el caso contrario (que la roca
ensayada sea mas rigida que la prensa) la probeta rompera de forma brusca o explosiva,
imposibilitando la toma de datos fiable en la fase post-rotura.

Tras este requerimiento de rigidez, es necesario un buen servo-control que permita regular la
fuerza ejercida por la prensa sobre la probeta durante el ensayo, precisamente para, de nuevo,
tener control sobre el proceso de reblandecimiento entre la resistencia de pico y residual.

Los sensores utilizados para medir las deformaciones durante el ensayo deben ser
suficientemente precisos para la apreciacion necesaria (entre milésimas y décimas de milimetro)
y con un rango de medida suficientemente amplio para poder capturar las deformaciones en el
estado residual. Este ultimo aspecto descarta el uso de galgas extensiométricas por su limitado
rango de medida, ademas de otros problemas asociados a su uso, como la imposibilidad de
capturar deformaciones localizadas (como las bandas de cizalladura o shear bands en inglés).

Al no poder usar las galgas extensiométricas resulta imposible medir la deformacion radial en
los ensayos triaxiales sin una celda de Hoek especialmente adaptada, pues no se pueden acoplar
dispositivos de medida dentro de la celda triaxial. Asi que se vuelve necesario medir la cantidad
de fluido que es necesario introducir o retirar de la celda triaxial para mantener la presion de
confinamiento durante este tipo de ensayos. Esta cantidad de fluido desplazado se puede
relacionar con la deformacion volumétrica de la probeta y asi, con esta tltima y la deformacion
axial, se puede obtener la deformacion radial. Por tanto, es necesario también tener control sobre
la presion de confinamiento y que sea ademas capaz de medir la cantidad de fluido desplazado,
por lo que hay que introducir un nuevo servo-control para este aspecto al equipamiento.

El posterior tratamiento de los datos obtenidos durante el ensayo requiere la separacion de las
componentes elastica (o reversible) y plastica (o irreversible) de las deformaciones. Si bien esta
diferenciacion entre deformacion elastica y plastica es simplista, pues no tiene en cuenta
fendmenos inelasticos (no elésticos, pero tampoco plasticos en el sentido geomecanico de la
palabra) como el cierre de defectos (microfisuras, poros...) inicial —que le da esa forma concava
inicial a la curva tension axial-deformacion axial—, es valida para el nivel de detalle en el que se
encuentra la investigacion del comportamiento post-rotura de rocas y macizos rocosos y para la
aproximacion que se da en esta tesis, donde se asume que la deformacion plastica no comienza
hasta alcanzar el nivel de tension denominado Crack Damage o nivel de resistencia a largo plazo.

Para realizar esta diferenciacion entre deformaciones elasticas y plasticas es recomendable
realizar ciclos de descarga-recarga durante el ensayo, sobre todo en la fase de reblandecimiento y
residual, pues permitirdn obtener el conocido como lugar geométrico de las deformaciones
irreversibles, gracias al cual se puede obtener uno de los pardmetros mas importantes del
comportamiento post-rotura de una roca o macizo rocoso, el angulo de dilatancia, y. En la fase
de reblandecimiento estos ciclos, ademas, ayudaran a controlar y registrar el proceso de transicion
desde la resistencia de pico a la residual.

Siguiendo con el tratamiento de datos, cabe sefialar que tampoco es una tarea facil y, ademas,
dificil de automatizar, pues la variabilidad natural de los resultados de los ensayos hace necesario
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tomar decisiones no tan logicas que un ordenador no siempre es capaz de considerar, por lo que
cada uno de los ensayos debe ser analizado por separado. Por otra parte la automatizacion del
proceso puede llevar asociada cierta pérdida de control y seguimiento de los datos que puede
conducir a errores dificilmente detectables.

Todas estas razones hacen que el proceso de obtencion de datos reales de comportamiento
post-rotura sea largo y costoso, si ademas se afiade el ya comentado pensamiento de que el
ingeniero debe evitar la rotura, no es dificil entender la falta de resultados relativos al
comportamiento post-rotura de rocas y macizos rocosos. Sin embargo con el paso de los afios y a
medida que las excavaciones subterraneas han crecido en tamafio y las simulaciones numéricas
adquieren cada vez mayor importancia, se ha puesto de manifiesto que es de rigor conocer ese
comportamiento post-rotura para comprender los mecanismos que tienen lugar y alcanzar el
objetivo de la simulacion en mecéanica de rocas, que no es otro que representar lo mas fielmente
posible el comportamiento real de un macizo rocoso bajo ciertas condiciones.

Para obtener ese comportamiento post-rotura, en este trabajo de tesis se ha propuesto
inicialmente un programa experimental enfocado a la obtencion del dngulo de dilatancia en rocas
a partir de ensayos de laboratorio (capitulos 3 y 4), para ello se han realizado mas de 200 ensayos
de compresion simple y triaxial sobre probetas de ocho rocas diferentes, estos ensayos incluyeron
los ya comentados ciclos de descarga y recarga para poder identificar las deformaciones plasticas
que son necesarias para el calculo del angulo de dilatancia.

Se obtuvieron las curvas completas tension-deformacion de cada uno de estos ensayos y se
computd, también para cada ensayo, los parametros relevantes para la caracterizacion completa
del comportamiento de la roca. Se obtuvieron asi, para cada uno de los ensayos: el modulo de
Young y el coeficiente de Poisson, la resistencia de pico y residual (esta tltima sélo cuando fue
posible, es conocido que la resistencia residual de un ensayo a compresion simple suele ser nula),
el modulo de descarga (también cuando fue posible) y la evolucion del angulo de dilatancia a
medida que aumenta la deformacion.

A partir de estos datos individuales se estudio la evolucion de los parametros con la presion
de confinamiento, demostrando las ya conocidas relaciones que presentan, a saber, al aumentar la
presion de confinamiento, el modulo de Young, la resistencia de pico y la resistencia residual
aumentan, mientras que el coeficiente de Poisson no parece verse afectado significativamente y
el modulo de descarga se reduce (la roca se vuelve mas ductil).

Ademas se ajustaron los criterios de rotura mas usados en mecénica de rocas (Hoek-Brown y
Mohr-Coulomb) a los resultados de resistencia, obteniendo buenos ajustes en ambos casos. Cabe
sefalar que la aplicacion del criterio de rotura de Hoek-Brown generalizado (Hoek et al. 2002) a
los resultados de resistencia residual mejord significativamente el ajuste en este caso.

Finalmente en esta parte, tras la obtencion de la evolucion del angulo de dilatancia con la
deformacion para cada ensayo, se pusieron todos los datos obtenidos para este parametro en
comun, revelando asi las dependencias que presenta y que fueron apuntadas por Alejano & Alonso
(2005), a saber, el angulo de dilatancia disminuye al aumentar la presion de confinamiento y
decrece a medida que aumenta la deformacion.

Se intentaron ajustar los datos de angulo de dilatancia obtenidos a los modelos existentes de
evolucion de este pardmetro. El primero de ellos (Alejano & Alonso, 2005) basado en resultados
derivados de rocas sedimentarias, aunque muy sencillo de aplicar, no fue capaz de recuperar el
angulo de dilatancia de pico observado en los ensayos, pero si capturd de forma razonable la
evolucion del angulo de dilatancia con la deformacion. El segundo de los modelos (Zhao & Cai,
2010a) ajustado a los datos, si represento bastante bien el comportamiento del angulo de dilatancia
observado en los ensayos, sin embargo este modelo implica muchas dificultades por los nueve
parametros de dificil correlacion fisica que es necesario obtener, por lo que su aplicacion al trabajo
diario del ingeniero puede ser dificil.

Alejano & Alonso (2005) ademas apuntaron que el angulo de dilatancia debe depender
también de la escala. El problema de la escala en mecanica de rocas, aunque conocido, no esta
totalmente resuelto y esto es debido, nuevamente, a la variabilidad natural del material con el que
se trabaja y al hecho de que al aumentar la escala, se aumenta también el numero de
imperfecciones (poros, heterogeneidades, microfisuras...) que existen en la roca. En esta tesis se
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ha intentado abordar el problema de la escala (capitulos 5 y 6) creando probetas de roca surcadas
por dos familias de discontinuidades artificiales (un conjunto de probetas con dos juntas sub-
horizontales y otra sub-vertical y otro conjunto de probetas con tres juntas sub-horizontales y dos
sub-verticales). El corte y la preparacion de estas probetas no han sido sencillos, se han tenido
que realizar algunas pruebas antes de alcanzar una metodologia que permitiera obtener y ensayar
dichas probetas con un grado de calidad razonable.

Se obtuvieron 22 y 20 de estos “macizos rocosos a pequefia escala’ respectivamente, usando
una de las rocas previamente estudiadas y se realizaron ensayos triaxiales de compresion. Hay
que senalar que, debido a las caracteristicas de las probetas, no fue posible realizar ensayos de
compresion simple ni de traccion (brasilefios) y aunque estas probetas pudieran alcanzar algo de
resistencia a compresion simple o a traccion, estos valores serian muy pequefios comparados con
los valores de resistencia obtenidos, por lo que razonablemente se podrian suponer nulos.

Se siguieron los mismos procedimientos que en los capitulos anteriores para obtener los
parametros mas relevantes a partir de los ensayos de resistencia triaxial y se volvieron a comparar
los resultados no solo frente a la presion de confinamiento, que reveld las mismas dependencias
antes apuntadas, sino también a los ensayos previamente realizados sobre probetas intactas,
obteniendo interesantes descubrimientos.

El médulo de Young de las probetas diaclasadas disminuye significativamente respecto de las
probetas intactas, lo cual es 16gico si se tiene en cuenta la menor rigidez de las discontinuidades
respecto de la matriz rocosa. Ademas es el mismo comportamiento esperado cuando se compara
la rigidez de la roca frente a la del macizo rocoso. También se reveld que el mdédulo de Young
crece con la presion de confinamiento, pero no lo hace de forma lineal, como se habia propuesto
hasta ahora, si no que es mas bien una relacion logaritmica: hay un fuerte incremento del modulo
de Young para pequeios incrementos iniciales de presion de confinamiento y luego, para
sucesivos incrementos de presion de confinamiento, el crecimiento se ralentiza.

Es interesante senalar que el coeficiente de Poisson apenas varia su valor (de 0.16 en las
probetas intactas a 0.16 y 0.19 respectivamente en las probetas diaclasadas) por lo que parece
razonable pensar que es cierta la aproximacion general en la que, para macizos rocosos de buena
calidad, se puede considerar un coeficiente de Poisson similar al de la roca sana.

La resistencia de pico es menor en las probetas diaclasadas que en las intactas, pero hay que
sefalar que la diferencia entre estos dos valores disminuye a medida que aumenta la presion de
confinamiento.

La resistencia residual es la misma en ambos tipos de probetas (considerando el nivel de
variabilidad que se presenta en mecanica de rocas). No solo este hecho es importante, sino que
ademas las curvas tension-deformacion de las probetas diaclasadas replican el comportamiento
de las probetas intactas, llegando a superponerse para cierto nivel de deformacion después de la
rotura, alcanzando el estado residual aproximadamente para los mismos valores de deformacion
en ambos casos. Una explicacion de este aspecto en términos energéticos podria resultar muy
interesante, es posible que la energia empleada en el corte de las discontinuidades sea igual a la
diferencia de energia tenso-deformacional derivada de las curvas recuperadas para los distintos
tipos de probetas.

El médulo de descarga mostr6 otra vez su dependencia con la presion de confinamiento y
resulto ser mas bajo que en las probetas intactas, la misma explicacion que para el caso del modulo
de Young podria ser valida aqui.

Finalmente en esta parte del estudio, el angulo de dilatancia se ajust6 al modelo de dilatancia
variable de Zhao & Cai (2010a) y, para el Gltimo conjunto de probetas diaclasadas, también se
ajusto al recientemente propuesto modelo de dilatancia de Walton & Diederichs (2015a) y se
compar6d con el modelo anteriormente obtenido para las probetas intactas. Este parametro
demostro su dependencia con el grado de fracturacion (o la escala) resultando mas pequefio en las
probetas diaclasadas para pequenas presiones de confinamiento, pero reduciéndose la diferencia
gradualmente y llegando a obtenerse los mismos angulos de dilatancia para presiones de
confinamiento a partir de 6 MPa. Hay que sefialar que donde puede tener relevancia este
comportamiento expansivo de las rocas desde un enfoque ingenieril es en las caras libres de las
excavaciones subterraneas, es decir, donde las presiones de confinamiento son pequeias, por lo
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que esta observacion empirica en la diferencia del angulo de dilatancia entre probetas intactas y
diaclasadas para pequenas presiones de confinamiento puede ser relevante en la ingenieria
practica.

Aunque el angulo de dilatancia es un pardmetro importante en el comportamiento post-rotura
de rocas y macizos rocosos, por si solo no es capaz de definir dicho comportamiento. Por ello, a
continuacion (capitulo 7), se propuso un modelo que representara el comportamiento elasto-
plastico con reblandecimiento. Para ello se obtuvieron, a partir de las curvas tension-deformacion
de los primeros ensayos realizados sobre tres rocas graniticas, las relaciones entre las tensiones y
las deformaciones plasticas antes, durante y después de la fase de reblandecimiento (transicion
desde la resistencia de pico a la residual). Posteriormente se aplicé un enfoque empirico y se
ajustd una ecuacion matematica a dichos pares de puntos. La combinacion de este modelo de
evolucion de la relacion entre tension y deformacion plastica con el modelo de dilatancia variable
anteriormente obtenido, permitio simular el comportamiento dilatante con reblandecimiento de
las rocas estudiadas. Si bien todavia existen diferencias entre el modelo y el comportamiento real,
la aproximacion obtenida es mucho mejor que los modelos existentes actualmente.

Finalmente (capitulo 8), para ilustrar las diferencias entre considerar o no una dilatancia
variable, se cred un modelo numérico de un tiinel profundo y se compararon diferentes situaciones
al considerar tres calidades de macizos rocosos (tres diferentes comportamientos post-rotura) y
un angulo de dilatancia constante y variable. Los resultados demuestran que para macizos rocosos
de calidad geotécnica media (los que presentan un comportamiento elasto-plastico con
reblandecimiento) la consideracion de un éangulo de dilatancia variable aumenta los
desplazamientos observados en el frente y las paredes del tunel, si bien no parece afectar
significativamente a la extension de la zona plastificada.
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1. Introduction

1.1. Preliminary comments

Growth of any society is directly related to the consumption of raw materials and to better
infrastructure development. This statement, though not new or unknown, has become clear in
recent years with the development of countries like China or India, which, without being the
highest real economic growth (Positions #16 and #13 respectively in the world rank, both have
7.4% of the Gross Domestic Product (GDP) growth in the period 2010-2014 compared to, for
instance, Ethiopia —#3—, with 9.9% of GDP growth in the same period or the United States —
#108— with 2.4% of GDP growth, or Spain —#137— with 1.4% of GDP growth —Source:
World Bank Group, 2015), given the huge population they have, represented an impact on the
world economy, becoming major importers of raw materials. This increase in imports by China
and India, has encouraged exploration and exploitation of new mineral deposits and the reopening
of old workings due to the increased price of the aforementioned raw materials.

Exploration and exploitation of coltan (columbite, niobium ore; and tantalite, tantalum ore)
and the minerals known as rare earth materials are being driven because of their worldwide
strategic value since they are crucial in technological development. China appears here as a major
producer and exporter, although the United States is trying to encourage exploration of these
minerals in order to reduce dependence on the Chinese market of these minerals (USGS, 2013).
Also the high prices reached by gold and copper have promoted development of new mines as
well as reopening of closed old mines.

Important infrastructure works are being undertaken around the world: our hackneyed AVE
(acronym of Alta Velocidad Espariola, Spanish High Speed in English) is burrowing Galicia with
railway tunnels in order to address our pretty fanciful orography; major construction works being
carried out in some Arab countries (e.g. Dubai in the United Arab Emirates); the huge reclaimed
island to build Kansai International Airport in Osaka Bay in Japan; the Panama Canal expansion;
or the Gotthard base tunnel under the Alps in Switzerland are examples, among many others, of
major infrastructure works completed or under construction in the last years.

So, despite the global crisis in which we find ourselves, there are numerous mining operations
or infrastructure works in which the rock masses are excavated for the benefit of society. Due to
this increased number of excavation works and the increasing scale of the operations, we should
also increase our knowledge of the rock masses to prevent accidents during the stages of
construction, operation and abandonment, not only because accidents can cost lives, which should
always be our top priority, but because it also leads to progress stops (with the consequent delay
in the execution and financial costs to the company) or can cause severe environmental damage.

Some of the accidents with more media coverage include breaking of the tailings dam of the
Aznalcollar mine near Dofiana National Park in 1998; the collapse of the San Jose mine in Chile
in 2010, where 33 miners were trapped for 70 days some 700 meters deep until they could be
rescued; or the northeast slope slippage of Bingham Canyon copper mine in Utah, USA, in April
of 2013.

To avoid these accidents it is necessary, as already mentioned, to get the most possible
knowledge of the materials one is working with, which are, for purposes of this thesis, the rock
masses. A rock mass is a set of elements of intact rock blocks crossed by geological discontinuities
of various kinds, so that the behavior of the rock mass does not only depends on intact rock’s
behavior, but also on the discontinuities’ behavior, as well as other characteristics like, for
instance, in situ stress level.

Thus, the behavior of a rock mass is complex and also difficult to estimate because it has a
marked control by scale, that is, it cannot be extrapolated directly to the observed behavior at the
laboratory scale of the work, so a standard application of the scientific method is not valid for this
field of engineering, in which the heuristic, the case studies and numerical models are necessary
investigative techniques. Keeping in mind that the amount of information available for carrying
out a project that includes excavation in a rock mass is often scarce and although it increases as



the work is done, even when it ends there is no assurance that one gets to know each and every
one of the details that control the behavior of the rock mass.

However, for design and analysis of excavations in rock masses it is necessary to know their
deformation and strength features. As a first approach, when information is scarce on the rock
mass, empirical methods are currently used (Bieniawski, 1976, 1989, Barton et al., 1974; Barton
& Grimstad, 1994) which are classic tools used in rock engineering, but often underestimate these
parameters, returning, generally, conservative designs.

When the information about the rock mass is deeper, these geotechnical classifications are
used to estimate the elastic parameters and peak failure criterion of rock masses (Hoek & Brown,
1980a, 1997; Hoek et al., 2002). This approach has been and still is widely applied in a number
of projects. However, it is noteworthy that the application of this method was limited to rock mass
behavior only up to the stress corresponding to the peak strength.

However, for certain tasks, such as application of the Convergence-Confinement method to
the design of tunnels, or to deal with a yielded pillar into an underground mine, or in caving
mining methods, it is necessary to know the rock mass behavior beyond the peak stress level.

The background for studying the post-failure behavior of rock masses is the post-failure
behavior of rock samples at laboratory. There is a notable lack of compression strength test data,
where tests have passed the peak strength and have continued to reach the residual strength. Only
a few authors (Crouch, 1970; Farmer, 1983; Hassani et al., 1984; Medhurst, 1996) have published
results of laboratory tests on rock specimens performing the tests beyond failure and up to a large
enough strain level.

Although some authors have begun to study post-failure behavior of rocks and rock masses
(Hoek & Brown, 1997; Crowder & Bawden, 2004, Carranza-Torres et al., 2002, Cai et al, 2004,
2007; Alejano & Alonso, 2005; Alonso et al., 2008; Alejano et al., 2009a, Alejano et al., 2009b;
Zhao & Cai, 2010a, 2010b; Zhao et al., 2010; Walton & Diederichs, 2012, 2015a,2015b; Walton
et al., 2015) there still are many aspects of interest to study. Precisely the lack of empirical data,
has made that it is still necessary to identify application ranges in which they operate properly,
and the advantages and problems they may have in terms of their applications.

1.2. Objective

This dissertation project aims to increase knowledge about post-failure behavior of rocks and
rock masses, by performing both uniaxial and triaxial compression tests using the fully servo-
controlled press that exists in the John P. Harrison Rock Mechanics’ Laboratory of the Mining
Engineering School of the University of Vigo, reaching, whenever possible, a strength level
corresponding to the residual state and performing strain measurements —axial and radial in the
case of uniaxial testing, meanwhile axial and volumetric in the case of the triaxial tests— during
the course of the tests. These tests will be performed with several unloading-reloading cycles,
with the intention of being able to identify the elastic and plastic components of strains.

A complete geomechanical characterization will be performed on the tested rock samples with
the aim that the results obtained in this dissertation serve to make comparisons and identify the
main features that make a rock behaves in one way or another.

Furthermore, a novel series of tests will be conducted in which two joint sets will be created
in each specimen, thus, turning the specimens into a sample rock mass at laboratory scale. While
this aspect still requires much more research, it stands to reason that it opens a door to
understanding the scale and structure effects and the behavior of the rock mass compared to that
of intact rock.

The results from this research could serve to:

e Improve knowledge of post-failure behavior of rocks at laboratory scale, aspect that
several of the aforementioned authors have labelled as scarce.

e Delve into the already known but complex and therefore not entirely solved problem
of scale in rock masses.
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e Improve design techniques, stability estimation and underground excavation control
and therefore safety in the implementation and use of tunnels, underground urban
spaces or mining.

e Check the validity and range of application of the models of post-failure behavior
recently proposed that, given the lack of information, are still in their early stages of
development.

The author would like to state here that the main original objective of the present study was
being able to carry out laboratory complete stress-strain tests in rock able to provide empirical
results, in order to check the validity of proposed dilatancy models (as shown in chapters 3 and
4). This main aim has been largely fulfilled and, in addition, a number of experimental works and
numerical simulations have also been carried out to continue on researching the post-failure
behavior of rocks and rock masses.

1.3. Justification

As discussed in the previous section, the first approach for the design of underground
excavations is based on classic geomechanical classifications (Bieniawski, 1976, Barton et al.,
1974). Next step involves analyzing the stress level in the excavation once the stresses are
redistributed in the surrounding rock mass. At this point, it is necessary to know the strength
characteristics of the material forming the rock mass —i.e. the intact rock and the
discontinuities— because if the modified in situ stresses are below the strength of the material,
problems of failure through existing discontinuities should be analyzed by means of classic
techniques (Hoek & Brown, 1980b) or by modelling software as Unwedge (Rocscience, 2013).
If the modified in situ stresses reach values close to or greater than the strength of the rock mass,
stress-strain analyses of the rock mass are needed to appreciate stability and propose support and
reinforcement when necessary.

No doubt that the excavation of an underground work modifies in situ stresses in the vicinity
of the excavation. Stresses supported by excavated rock, once removed, must be supported by the
surrounding rock that has not been excavated. Assuming that the failure is not structurally
controlled, if the surrounding rock can withstand that excess stress without reaching the failure
criterion, the excavation will be self-supporting and additional support will not be strictly
necessary. However, it is known that the rock masses tend to lose bearing capacity over time, this
fact can lead to failure if no support is installed. This behavior will result in the release of rock
blocks through pre-existing discontinuities. To long term prevent of such rock falls is desirable
the installation of support, which will convert this discontinuous behavior (failure through
discontinuities) in a more continuous behavior and generally in the inelastic or plastic range
(stress relief in the form of irreversible rock material strain).

Design of an excavation requires, therefore, to know the mechanical behavior of the rock mass,
which is defined by its elastic behavior, its failure criterion and its post-failure behavior. The first
two aspects have been investigated from the early developments of rock mechanics, so they can
be assumed to be reasonably well known, whereas post-failure behavior has been less studied and
there are still gaps in the knowledge of the parameters governing that behavior.

Since rock mechanics is a relatively young discipline, it is hardly surprising that little attention
has been paid to post-failure behavior of rock and rock masses —since engineering objective
usually is to prevent failure—. During last 20 years some authors have begun working to try to
understand how rock masses behave after they reach the peak failure criterion.

Hoek & Brown (1997), based in their experience in the engineering and numerical analysis of
a variety of real cases, proposed three basic types of post-failure behavior for rock masses: an
elastic-brittle behavior for good quality rock masses (Geological Strength Index, GSI > 75); an
elastic-perfectly plastic behavior for poor quality rock masses (GSI < 25) and strain-softening
behavior for average quality rock masses (25 < GSI < 75).

Archambault et al. (1993) also demonstrated qualitatively that the post-failure behavior must
also necessarily depend on the confining stress to which the material is subjected.



It is therefore necessary to establish behavior frameworks and to obtain parameters that allow
us to better understand and put numbers to this post-failure behavior. Among these parameters
one can cite: dilatancy (for the three types of behavior); residual failure criterion (for elastic-brittle
and strain-softening) and evolutionary failure criterion regarding softening parameter (for strain-
softening). And it must be remembered that these parameters may be dependent on state variables,
as the confining stress or the plasticity level.

The residual failure criterion can be obtained as recommended by Cai et al. (2004, 2007) who
introduce the concept of GSI for the rock mass residual state (GSI;). In these publications, the
authors also propose an extended GSI classification system, which includes two simplified
parameters for classification, the volume of the block and the joints condition factor. These two
parameters are essentially descriptive and can be reasonably estimated, which would allow to get
the value of this extended GSI.

Evolutionary failure criterion is only necessary in the case of a material showing strain-
softening behavior, which is characterized by a gradual transition from the peak failure criterion
to the residual failure criterion and this gradual transition is governed by a plastic or softening
parameter, 77. This evolutionary failure criterion therefore depends not only on the stress tensor,
but also on that softening parameter (Rodriguez-Dono & Alejano, 2012).

The first approaches that were taken into account for the dilatancy considered two options:
first, consider the dilatancy angle, ¢ (which is the appropriate parameter to evaluate the dilatant
behavior of a material) always equal to the friction angle, ¢, which was termed as associated flow
rule; and second, consider that the dilatancy angle was constant and, in general, equal to zero.

Vermeer & De Borst (1984) have noted that an associated flow rule does not necessarily
represent post-failure behavior of rocks. Moreover, Detournay (1986) warned that the use of a
constant dilatancy might lead to calculation errors and proposed a plastic strain dependent
formulation. This dependence on plastic strain is observable as well as it is the dependence on the
confining stress (Detournay 1986; Archambault et al, 1993; Farmer, 1983; Medhurst & Brown,
1998; Yuan & Harrison, 2004). Moreover, the dependence on the scale of the dilation has not
been investigated, although it is a widely accepted topic when discussing discontinuities’
dilatancy.

Despite these considerations, aiming to provide guidelines to apply in daily engineering design
and based on their extensive practical engineering experience, Hoek & Brown (1997)
recommended the use of values of the dilatancy angle, ¢, dependent on the quality of the rock
mass and related to the friction angle, ¢: considering (/= ¢/ 4 for good quality rock masses and
=0 for poor quality rock masses.

Alejano & Alonso (2005) proposed a dilatancy model computable in two parts that included
the dependence on confining pressure, on plastic strain and, indirectly, on scale. The first part of
the model is concerned with obtaining the peak dilatancy angle and the second part simulates the
decay as plastic strain progresses. It should be noted that this model considered certain
simplifications, although it was very attractive to simulate dilatancy due to its simplicity (only
one parameter dependent). In attempting to apply this model to the rocks studied in this research
work, some discrepancies in the peak dilatancy angle between the results and those predicted by
the model arose, however the evolution of this parameter with the plastic strain seemed to catch
the actual behavior of rock. It should be noted that the model was obtained from tests performed
by other authors (Medhurst, 1996; Farmer, 1983) in sedimentary rocks, while igneous and
metamorphic rocks are the main focus of this work, this reason could lie behind the observed
differences in the peak dilation angle.

Zhao & Cai (2010a) proposed a dilation model by fitting a curve to the results of testing a
number of rocks ranging from soft to hard rock and including different types of rocks (igneous,
metamorphic and sedimentary ones). This model included the dependence on confining stress and
plastic strain, also capturing well the results obtained in our tests. However it is necessary to
obtain nine parameters with little or no physical significance and the solution is also not
unambiguous (various sets of parameters can provide equally accurate results).



Walton & Diederichs (2015a) have recently proposed a new dilation model that requires
between four and seven parameters —depending on the available data— to completely
characterize the dilatational behavior of rocks, being the main focus brittle rocks. It is
mathematically based in a piecewise function that separates pre-mobilization of dilatancy,
mobilization of peak dilatancy and post-mobilization of dilatancy. This division not only allows
to consider each part separately, but it also allows a more detailed study of the influence of each
parameter on the model and correlations with other geomechanical parameters.

It is reasonable to think that in coming years, models that simulate the dilatant behavior of
rocks will be proposed, which do not make so many assumptions like Alejano & Alonso (2005)
model and are not as complicated as that of Zhao & Cai (2010a). They should be ultimately based
on laboratory studies (such as those presented here), numerical models and observations and
measurements of the practical behavior of rock masses at large scale in the field. It is my
expectation that the information gathered in this Ph.D. thesis can be of help for carrying out these
tasks.

1.4. Contents of this dissertation

This Ph.D. thesis is structured in ten chapters, four of them corresponding to published papers:
two of these were published in the International Journal of Rock Mechanics and Mining Sciences,
and the other two correspond to oral presentations in rock mechanics symposiums (ARMA 2012
and Eurock2013). The first two chapters include the objectives, justification and an introduction
to rock and rock mass behavior. The next four chapters (3, 4, 5 and 6) present the experimental
work of this thesis developed along the last four years. This experimental part is the core of the
doctoral work where more than 400 tests, some of them quite unconventional (such as those
obtaining complete stress-strain curves with unloading-reloading cycles performed with
artificially jointed specimens), have been performed starting from recovering the samples and
preparing the specimens. The following chapters (7 and 8) show further developments seeking to
extend the laboratory information recovered to numerical models in order to gather information
on the implementation of dilation models in numerical codes and to explore the extrapolation of
data to the rock mass scale and its impact on excavation behavior, being this line (numerical code
simulation) the next natural step in the research. Chapter 9 outlines the general conclusions, based
on the partial concluding remarks presented in every chapter. Finally, the last chapter suggest
future research lines. In the following paragraphs, these chapters are briefly described.

The first and current chapter is a general overview of the post-failure behavior of rocks and
rock masses and an introduction to the present dissertation.

The second chapter encompasses a literature review of rock mass behavior, particularly
focusing the post-failure or post-peak part, which is the more complex and less researched one,
as well as the main focus of the research project in which this dissertation is included.

The third chapter has already been published as a paper in the International Journal of Rock
Mechanics and Mining Sciences (Arzua & Alejano, 2013). This chapter explains the first
successful attempt in recovering dilatant behavior of rocks starting from laboratory tests. Three
granitic rocks were fully characterized. The most relevant pre- and post-failure parameters were
obtained and fitted to the existing models. More than 200 tests were performed using, when
available, rock mechanics standards (ISRM, 2007), 90 of them being unconfined and confined
strength cycled tests.

The fourth chapter is the continuation of the laboratory testing, expanding the obtained results
to a wider range of rock types including sedimentary and metamorphic rocks. The results of these
chapters are a collaboration with Dr. Gabriel Walton and M.Sc. Ignacio Pérez-Rey and have also
been published elsewhere (Walton et al., 2015; Pérez-Rey et al., 2014). In this chapter, five
different rocks (two different limestones, a marble, an amphibolite and an orthogneiss) were tested
in order to fully characterize them. The same procedures that in the previous chapter were used.
More than 110 unconfined and confined strength cycled tests were performed. The different
behaviors of the different rocks were captured and the most relevant pre- and post-failure
parameters were obtained and fitted to existing models.



The fifth chapter has been published in the Infernational Journal of Rock Mechanics and
Mining Sciences (Arzua et al., 2014). In this chapter, confined strength cycled tests were
performed in 28 intact rock specimens and 22 artificially jointed rock specimens of one of the
previously studied granites. These jointed specimens were intended to simulate a small scale rock
mass. Comparison of intact specimen results with jointed ones revealed some key questions
regarding post-failure scale problems. These questions were answered and explained in the text.
This type of testing opens interesting opportunities to study the role of structure and scale in rock
mass deformability, strength and post-failure behavior.

In the sixth chapter the author deepened a bit more in the small scale rock mass introduced in
the previous chapter. We created the same jointed specimens but with more joints, aimed to
confirm the previously observed trends. These last two chapters would probably be the most
relevant contribution of this thesis to rock engineering knowledge. A comprehensive publication
is being prepared reflecting the main findings of the results in the context of the information
presented in previous chapters.

The seventh chapter is based on a paper presented in the Eurock2013 Symposium (Arzia et
al., 2013) where the author tried to find a model that characterizes post-failure behavior of the
granitic rocks studied in the third chapter (strain-softening behavior). To achieve this model an
empirical approach was used, fitting a mathematical equation to the actual axial stress-plastic
strain relationship from the previously performed tests. It has to be noted that the comparison
between this newly performed model and the actual tests unveils some differences due to the
initial assumptions and inaccuracies associated to geometric and numerical simplifications needed
to carry out tests. Nevertheless, the implemented model is a better approach than currently
available strain-softening models.

Eighth chapter covers the results presented in a paper presented in the ARMA2012 Symposium
(Alejano et al., 2012b). The chapter highlights the difference between considering or not
considering a variable dilation angle in the excavation of a tunnel. Numerical models were
performed on both different post-failure behavior and different quality rock masses in order to
determine the amount of deformation in the walls and face of the tunnel and the extent of the
plastic zone around the excavation for the different models considered.

Ninth chapter highlights the most relevant conclusions achieved in the course of the present
dissertation.

Tenth chapter presents some possible future research lines that arose all along the process of
study and research that ultimately crystallized in the present document.
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2. State of the art: rock and rock mass behavior

2.1. Introduction

Rocks are naturally occurring solid aggregates formed by one or various minerals, and they
appear in the Earth’s crust forming rock masses, which are portions of rocks crossed by
discontinuities of different geological origin (faults, joints, folds...) in such a way that a rock
mass can be defined as a three-dimensional puzzle of rock blocks and discontinuities (Alonso,
2001).

It becomes evident, therefore, that the rock mass behavior will be controlled by the constitutive
rock, as well as by discontinuities’ distribution behavior. In this apparently simple and logical
idea, lies the difficulty on studying rock mass behavior, which is very influenced by its scale,
since the number of discontinuities considered when studying a rock mass grows as rock mass
size grows (Hoek & Brown, 1997).

The same occurs when considering intact rock specimens for laboratory testing. It is well
known that rock is a heterogeneous material composed of different mineral grains and presenting
defects like pores, micro-fractures or weakness planes, so, under the same logic than for rock
masses, the number of imperfections inside the rock specimen will grow as the rock sample
increases in size.

Despite this problem —known as scale effect— is not completely solved, there are widely
accepted approaches that work reasonably well while the elastic —i.e. before peak strength— and
strength behaviors of the rock mass are considered. The same cannot be stated when studying
post-peak behavior of rock masses. There are some gaps still unsolved that do not allow engineers
to fully characterize the rock mass behavior.

Although mechanical features of rocks and discontinuities are reasonably known from the
point of view of their application to engineering problems, henceforth it is not yet possible to
perform a full characterization of the complex network of rocks and discontinuities that form a
rock mass. Therefore, the knowledge of its actual behavior is limited, mainly due to its inherent
complexity, its heterogeneity and the difficulties associated to its observation, among other issues.

The main aim of this chapter is presenting the parameters associated to a proper
characterization of rock masses to fully characterize their behavior. This includes estimates of
elastic parameters, definition and parameters of the most used failure criteria and possible
approaches to characterize post-failure behavior, with particular emphasis on dilation. Comments
on relevant and still open issues of this approach will be highlighted.

A similar and older version of this chapter dealing with rock mass behavior, but with a more
mathematically rigorous background can be consulted in Alonso (2001).

2.2. Rock mass characterization

In order to build an engineering underground work in a rock mass it is necessary to know its
features, structure and attributes to ensure the feasibility of the construction from a technical or
engineering point of view or, in case that construction is not initially viable, to propose the suitable
actions to carry out the construction in a safe and economical way.

Nevertheless, it has to be pointed out that a geotechnical study has limitations regarding the
fact of being working with a natural and heterogeneous material, so it is not possible to know a
priori each of the geological, structural and geomechanical details of a site.

Therefore, the objective of a geotechnical study should be limited to quantify and know the
construction relevant characteristics, including stratigraphy, structure, lithology, contacts,
morphology, groundwater table and thickness and characteristics of the altered part of the rock.
The effects of variability of parameters and lack of geotechnical knowledge on rock mass
response is probably one of the key issues in rock engineering design. As the construction moves



forward, more information of the actual features will be available, which can be used to confirm
or fine-tune the initial design.

The fundamental parameters of the rock (strength, deformability, density...) as well as those
of the discontinuities (number of joint sets, mean spacing and length, main geotechnical
features...) shall be known. It is also necessary to measure or estimate the in situ stress and
consider the effects of other neighboring constructions.

In the following, the characterization of failure criteria, elastic parameters and post-failure
behavior of rock masses are briefly revisited.

2.2.1. Failure criteria

A failure criterion is a set of equations that predicts the stress states at which a material will
fail. In the context of this dissertation, the material will be a rock or a rock mass. Two failure
criteria are typically used in rock engineering: Mohr-Coulomb and Hoek-Brown, which are
briefly reviewed in the following sections.

2.2.1.1. Moht- Coulomb failure criterion

The Mohr-Coulomb failure criterion is the simplest and still most widely used failure criterion
(Jaeger et al., 2007). This criterion postulates that the shear strength of rocks has two components:
cohesion and friction. Coulomb (1773) assumed that failure in a rock takes place along a plane
making an angle £, to the horizontal, due to the shear stress, 7, acting along that plane. Motion is
assumed to be resisted by a frictional-type force whose magnitude equals the normal stress, o,
acting along this plane, multiplied by some constant factor, g=tang, being u the coefficient of
internal friction and ¢ the internal friction angle of the material. Furthermore, motion along the
initially intact failure plane is also assumed to be resisted by an internal cohesive force of the
material, ¢. Such a force reflects the fact that, in the absence of a normal stress, a finite shear
stress, Sy, is still needed in order to initiate failure. This can be expressed as:

T=c+o, tang 2.1

Equation (2.1) defines a straight line on the (o;,7) plane (Fig. 2.1) indicating the stress states
at which the failure will occur.
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o

Fig. 2.1. Straight line corresponding to Mohr-Coulomb failure criterion (eq. (2.1)) and relationship
between principal and shear stresses.



Normal and shear stresses of the failure plane can be related to the principal stresses using Fig.
2.1:

o :%(0'l +<73)+%(0l —0,)cos2f3

n

| 2.2)
T= 5(01 —0,)sin2p3

Thus, the Mohr-Coulomb failure criterion can also be written as a function of major, o7, and
minor, o3, principal stresses:

coS 1+sin
_cosg . l+sing

0, =2c—— s -
1—-sing l—-sing

2.3)

9e_08 @

Being the first term of the equation (2.3), ( s
—sin

j, the uniaxial compressive strength,

_l+sing

and the slope of the line, (K s

- J, the coefficient of active earth pressure.
1-sing

This failure criterion is valid for both peak and residual strength, but due to its linearity, it is
not able to correctly predict the tensile strength of the rock. This failure criterion predicts ratios
of unconfined compressive strength to unconfined tensile strength between 1 and 5.83 (Jaeger et
al., 2007), while experimental values of this ratio tend to be on the order of ten or so.

Henceforth, Mohr-Coulomb failure criterion is not applicable to failure planes on which the
normal stress is tensile. The standard practice for determining the failure stress states for negative
normal stresses implies to interrupt the straight line of the criterion when tensile strength
determined from laboratory tests (7)) is reached (Fig. 2.2).

O; 4

ucs

Ty T3

Fig. 2.2. Extrapolation of the Mohr-Coulomb failure criterion to the region of negative confinements.

The linearity of the criterion also implies that the compressive strength will increase linearly
with the confining stress, but experiments typically show that o; increases at a less-than-linear
rate with o3. In order to correct these deficiencies, Mohr (1900) suggested that Coulomb’s
equation could be replaced by a more general, possibly nonlinear, relation.

2.2.1.2. Hoek-Brown failure criterion

Hoek-Brown failure criterion (Hoek & Brown, 1980a) is the most widely accepted and used
one when studying rock masses behavior. It was initially proposed aimed to help in the design of
underground excavations in competent rock masses. This failure criterion has suffered a number
of modifications over the years in order to make it applicable for a greater number of rock
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engineering situations. The original failure criterion expression in terms of principal stresses is
showed in equation (2.4).

0, =0, +\mo, o, +s0’ 2.4)

where m, s and o (the uniaxial compressive strength) are constants of the intact rock. If the rock
is an intact rock, s = 1 by definition, which allows to obtain m and o, from uniaxial and triaxial
strength tests. If these strength tests cannot be performed, there are tables on the available
bibliography based on a number of performed tests (Hoek, 1983; Doruk, 1991; Hoek et al., 1992)
which can provide rough values of these parameters. Hoek (1983) performed a brief analysis of
the characteristics and limitations of this failure criterion version.

The main advantage of this failure criterion expressed by equation (2.4) against Mohr-
Coulomb criterion is its non-linearity.

Hoek & Brown (1980a, 1988) add the relationship between m, s and a modified version of the
Rock Mass Rating (RMR, Bieniawski, 1976) and distinguish between disturbed and intact or
undisturbed rock masses.

For the disturbed rock masses:

(RMR—]OO]
m, =m e 14 (2.5)
[RMR—]OO) Y
o s (2.6)
And for the undisturbed rock masses:
[RMR—]OO]
m,=m-e * (2.7
(RMR—IOO)
9 (2.8)

s=e
where m;, and m; are the constants for the broken and intact rock respectively.
This addition allowed to extend the failure criterion from rocks (s = 1) to rock masses (s < 1).

In 1992, Hoek et al. modified the criterion to take into consideration the fact that very jointed
rock masses have no tensile strength, which led to get next equation:

0 =0.+0 {mbq +SJ (2.9)
1= Y3 c . '

c
where m;, s and a are constants of the rock mass depending on the structure and joints conditions.

Hoek (1994) and Hoek et al. (1995) introduce the generalized Hoek-Brown failure criterion
aimed to deal with very poor quality rock masses. In this version of the failure criterion, the
authors use the Geological Strength Index (GSI) to replace the RMR, in order to overcome the
shortcomings of the RMR in such rock masses. The GSI classification is a simplified version of
the RMR where neither the occurrence of water nor the role of joint orientation are taken into
account. This approach is founded on the fact that numerical or analytical approaches can manage
these issues without resorting to empirical methods. The authors also dismiss the concept of
disturbed and undisturbed rock masses arguing that the disturbance is generally generated by
engineering activities and it can be evaluated by means of decreasing GSI value.

In this version of the criterion (Hoek, 1994; Hoek et al., 1995) equation (2.9) is used, but the
authors differentiate between very poor quality rock masses (GSI < 25) and the rest (GSI > 25).
For very poor rock masses, GSI < 25:
s=0 (2.10)
GSI

a=0.65-—— 2.11)
200



For the rest of the rock masses, GSI > 25:

(GSI—IOO]
m, =m e 28 (2.12)
[GSI—IOO]
g=g O (2.13)
a=0.5 (2.14)

One should take into account that the generalized Hoek-Brown criterion for rock masses with
GSI > 25 is the same as the original one, only changing RMR by GSI.

Later, and since this criterion was being used (because of the lack of alternatives) in rock
masses where the criterion was not applicable, Hoek et al. (2002) modified the failure criterion
again to take into consideration the disturbance of the rock mass due to blasting and stress relief.
The basic equation of the criterion is, again, equation (2.9), but s and a parameters are modified
and a new factor, D, is added to consider that disturbance:

(GSI—]OO]
M. = m.eh 14D (2.15)
b i

[GSI—IOO] 216
= 2.16)

1 1 =8 =20
a=—+—e® —e? 2.17
e - e

D ranges from 0 (undisturbed rock masses) to 1 (very disturbed rock masses). This parameter
has a great effect on rock mass strength and can be estimated using Table 2.1 (Hoek et al., 2002)
which was proposed based on the expertise on tunnel and slope design of many authors. It has to
be taken into consideration that the parameter D depends on many other factors and it may be
impossible to quantify in a precise way them all, so the results are estimates and each case has to
be particularly studied.

Hoek-Brown failure criterion in its last version (Hoek et al., 2002) can be used in intact rock
specimens as well as in poor to good quality rock masses, but it does not adequately represent the
behavior of very good rock masses, where spalling associated to brittle failure is meant to take
place.

2.2.2. Rock mass deformability

In order to simulate rock mass behavior before the failure criterion is attained, it is certainly
needed to know deformability parameters, which indicate how the rock mass will deform under
load conditions. There are two parameters to estimate pre-failure deformability of an isotropic
rock mass:

e FElastic modulus, also called Young’s modulus, of the rock mass: £,
e Poisson ratio of the rock mass: v,

If the rock mass is transversely isotropic, both parameters should be estimated for each of the
principal directions and it should be added the parameter called shear modulus, G.

Nevertheless, it is very difficult to obtain an actual value of the Young’s modulus of the rock
mass from in situ or laboratory tests because this parameter mainly depends on the structure of
the rock mass rather than on the rock itself, especially when a very good quality rock mass is
considered. That is why empirical formulae have been developed that relate Young’s modulus to
the geotechnical quality of the rock mass. Among them the most used ones are those by
Bieniawski (1976) and Serafim & Pereira (1983), whose expressions are, respectively:

E,(GPa)=(2RMR)-100 (2.18)



RMR-10

E,(GPa)=10

(2.19)

Bieniawski’s equation (eq. 2.18) is valid for rock masses with a RMR value between 60 and
100, whereas the second equation (eq. 2.19), which is based in a good number of in situ tests
performed in dam sites in Portugal, presents a slightly larger range of applicability, being valid
for rock masses with a RMR value between 40 and 100.

Table 2.1. Guide for the estimation of the disturbance factor D (Hoek et al. 2002).

Appearance of rock Description of rock mass Suggested
mass value of D
Excellent quality controlled blasting or excavation
by Tunnel Boring Machine results in minimal D=0
disturbance to the confined rock mass surrounding a
tunnel.
Mechanical or hand excavation in poor quality rock
masses (no blasting) results in minimal disturbance D=0
to the surrounding rock mass.
Where squeezing problems result in significant floor D=0.5
heave, disturbance can be severe unless a temporary | No invert
invert, as shown in the photograph, is placed.
Very poor quality blasting in a hard rock tunnel
results in severe local damage, extending 2 or 3 m in D=0.8
the surrounding rock mass.
D=0.7
Small scale blasting in civil engineering slopes Good
results in modest rock mass damage, particularly if blasting
controlled blasting is used as shown on the left hand
side of the photograph. However, stress relief results D=1.0
in some disturbance. Poor
blasting
o o D=1.0
V_ery large open pit mine slopes s_uffer s1gp1ﬁcant Production
disturbance due to heavy production blasting and blastin
. g
also due to stress relief from overburden removal.
In some softer rocks, excavation can be carried out
by rippi d dozing and the degree of damage to D=0.7
y Tipping an g g g .
the slope is less. Mechanical
excavation




Hoek & Brown (1988) recommend to use Serafim & Pereira (1983) equation (2.19) when
handling their failure criterion. Later, the same authors (Hoek & Brown, 1997) modified this
equation to consider rock masses whose forming rocks have a uniaxial compressive strength
below 100 MPa, and also including the GSI instead of the RMR:

o GSI-10
E,(GPa)= /ﬁ-m 0 (2.20)

In the last version of their failure criterion (Hoek et al., 2002) they included the disturbance
factor on the equation:

D o GSI-10
E,(GPa) :(1—?] , /ﬁ-lo 40 (2.21)

More recently, Hoek & Diederichs (2006), based on a thorough analysis of a number of
geotechnical studies —many of them performed with deformation measurements by means of
plate-jacking tests or flat-jacks tests— proposed a new expression —which the authors call
Simplified Hoek and Diederichs equation— where the Young’s modulus of the intact rock is not
considered:

D
E,(GPa)=100] ——2— (2.22)
l+e M

If the available information is larger and the elastic modulus of the intact rock is available, the
same authors in the same paper (Hoek & Diederichs, 2006) propose another equation in which
the Young’s modulus of the intact rock is included:

1-D
E_ (MPa)=FE, | 0.02+ —A (2.23)

(60+15D—GSIJ
l+e 1

There are also other equations based on the Q index of Barton (Barton et al., 1974), as well as
other equations specifically applicable to stratified and relatively low strength rock masses
(Ramamurthy, 1986) where the rock mass elastic modulus is related to the elastic modulus of the
intact rock (Er) and the RMR.

Regarding Poisson’s ratio of the rock mass, it has to be noted that its estimation usually does
not get much attention because its influence on rock mass response is usually quite small, as it is
its natural range of variation (0.15 — 0.45). Its value for a rock mass can be estimated using the
tables presented by Hoek & Brown (1988) and for good quality rock masses it is accepted to be
the same of the intact rock as obtained from laboratory tests.

2.2.3. Post-failure behavior of rocks

Brittle solid materials, like glass, fail after reaching their elastic limit and are unable to support
any load after failure. In contrast, many rocks (and concrete) show a residual strength after
reaching certain level of plastic (irreversible) strain. There are four types of post-failure behavior
(Fig. 2.3), depending on how this residual strength is reached:

a) Upper left graph of Fig. 2.3 represents the Strain-Hardening (SH) behavior,
characterized by increasing its strength after reaching the elastic limit, but it only
occurs for the case of rocks when there is a great confining pressure, far away from
the engineering construction orders of magnitude for rocks, but not for clays or
evaporitic rocks.

b) Upper right graph of Fig. 2.3 represents the Elastic-Perfectly-Plastic (EPP) behavior,
where the material is able to support its ultimate strength after reaching it and for large
levels of plastic strain.



c) Lower left graph of Fig. 2.3 represents the Elastic-Brittle (EB) behavior, characterized
by a sudden drop in strength from its ultimate strength to the residual strength, this
sudden transition shows no plastic strain and, after the residual strength is reached, the
rock material begins to deform plastically.

d) Lower right graph of Fig. 2.3 represents the Strain-Softening (SS) behavior, where
there is a progressive drop in strength from peak to residual accompanied by plastic

strains.
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Fig. 2.3. The four possible post-failure behavior of rocks.

As commented above, rock mass behavior is influenced by its forming rock and
discontinuities’ behavior, so it is reasonable to believe that scarcely jointed rock mass behavior
should be similar to the observed intact rock behavior. Hoek & Brown (1997) reached this same
conclusion based in their own experience in diverse rock mass modelling, as they indicated that
a good quality rock mass (GSI > 75) will present an elastic-brittle behavior, whereas a poor quality
rock mass (GSI < 25) will present an elastic-perfectly-plastic behavior. A mean quality rock mass
(25 > GSI > 75) will behave in a strain-softening manner.

It also has to be pointed out that elastic-perfectly-plastic behavior and elastic-brittle behavior
are the limiting cases of a strain-softening behavior, i.e. elastic-brittle behavior will occur if the
transition from peak to residual is sudden and elastic-perfectly-plastic behavior will occur if there
is no transition. So considering strain-softening behavior is a comprehensive approach able to
accommodate most commonly observed rock mass behavior.

Post-failure behavior of a rock depends, in addition, on the confining stress, as evidenced by
the classic tests performed by Von Karman (1911) on Carrara marble (Fig. 2.4). In this figure it
can be observed an elastic-brittle or strain-softening behavior prior reaching 50 MPa of confining
stress, while for a confining stress of 110 MPa the rock behaves almost in an elastic-perfectly-
plastic manner because it can reach strains of almost 5% without evident lose in strength. For
larger confinements, 360 MPa (conditions to be encountered around 15 km deep in the Earth’s
crust), strain-hardening behavior appears.

This phenomenon was also observed by Hadizadeh & Rutter (1983) (Fig. 2.5).These authors
tested a quartzite for different confining pressures and graphed the results of the deviatoric stress

(o7 - 03) versus the axial strain (&/). These graphs also show that the peak strength grows as
confining pressure grows, meanwhile the post-failure slope of the curve becomes less steep.



Brittleness of a rock is defined by the slope of the axial stress-axial strain curve once peak
strength has been achieved, i.e. following nomenclature on Fig. 2.6:

M R
O, — 0,

R

2.24
pr~ (224)

where o refers to strength, ¢ refers to strain, M superscript refers to peak, R superscript refers to
residual and subscript / refers to the major principal direction.
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Fig. 2.4. Results of the classic strength tests performed by Von Karman (1911) on Carrara marble.
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Fig. 2.5. Results of the tests performed by Hadizadeh & Rutter (1983) on quartzite.
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Fig. 2.6. Idealized axial stress-axial strain graph of a rock that behaves in a strain-softening manner,
where the three deformational phases are also indicated.

Fig. 2.6 shows in an idealized way the three deformational phases that exhibits this kind of
material: an almost elastic zone between the beginning of the test and the peak strength; a
softening zone between peak and residual strengths; and the residual phase. These three phases
can be expressed in terms of the failure criterion as follows:

F(0,,0,,0)=0 (2.25)
representing the failure criterion of the intact rock,
F(o,,0,,m)=0, with 0<n <7’ (2.26)
representing the evolving failure criterion during softening and
F(01,03,77) =0, with > 77* (2.27)

representing the residual failure criterion corresponding to a perfect plasticity state.

where 7, known as softening parameter, controls the transitional failure criterion between peak
and residual failure criteria. This parameter will be, generally, dependent on the plastic strains.

Elastic state exists while this softening parameter is null (eq. 2.24), softening state occurs when
the softening parameter is not null but it does not reach a specific value 7%, known as critical
softening parameter (eq. 2.25) and the residual state appears when the softening parameter surpass
this critical value (eq. 2.26).

Softening portion slope (Fig. 2.6) is known as softening or drop modulus. If the rock material
behaves in an elastic-brittle manner, this drop modulus tends to infinity, whereas if the behavior
is elastic-perfectly-plastic, this modulus becomes null.

Therefore, in order to correctly describe post-failure behavior of a rock, it will be necessary to
know:

a) Peak and residual failure criteria and, if there is a transition (i.e. strain-softening
behavior), evolving failure criterion between peak and residual strengths. Residual
failure criterion allows to estimate the strength of the broken material, consequently it
will present the same equation that peak failure criterion (Hoek-Brown, Mohr-
Coulomb...) but different parameters.

b) Relationship between stresses and strains as the strength decreases from peak to
residual state. This relationship can be defined by the softening modulus and the
critical softening parameter (77*) or by a specifically designed function. It has to be
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noted that this stresses-strains relationship is hard to know because it depends on the
confining pressure.

c) A flow rule that drives how the strains develop (mainly the principal plastic strains)
once peak strength failure criterion has been achieved and defines them once the
residual state has been reached. It is typically assumed to have the same shape as a
failure criterion (Hoek-Brown, Mohr-Coulomb...) with strains substituting the
stresses.

When the flow rule is equal to the failure criterion in each moment, it is known as associated
flow rule, if Mohr-Coulomb failure criterion is used, associated flow rule means that the dilation
angle, i, equals friction angle, ¢, at each moment. If flow rule is different from the failure
criterion, one will speak of non-associated flow rule.

One of the classic ways to implement the softening model using Mohr-Coulomb failure
criterion consists in utilizing a function of the principal stresses, o7 and o3 and of the softening
parameter, 77 (Carranza-Torres, 1998; Itasca, 2011):

F(oy,05,n)=0,-K (1)0,—q,(n)=0 (2.28)

The functions K,, (77) and g, (77) represent the evolution of the material cohesion and friction
values as depending on the softening parameter:

e
K, (77):—1:;228; (2.29)

q,(n)=2c(n)yK, (1) (2.30)

The variation of the friction angle, ¢, and the cohesion, ¢, as depending on the softening
parameter can be considered linear by parts, as they appear on a general form in Fig. 2.7. It has
to be pointed out that the classical way to implement this behavior is considering a descending
trend of both parameters (Fig. 2.7.a, top). But a relatively new approach considers that the failure
will occur first losing the cohesion and then, mobilizing the friction angle (Fig. 2.7.b, bottom), it
is the approach known as Cohesion-Weakening-Friction-Strengthening (CWEFES). This latter
approach was developed to fit observations of hard rocks behavior at depth, where brittle
phenomena such as spalling are typically observed.
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Fig. 2.7. Evolution from peak to residual friction angle and cohesion. a) Descending both parameters, b)
following CWF'S approach.



When a strength test (uniaxial or triaxial) is performed on a rock specimen, the rock behaves
modifying its volume, and this change in volume becomes more evident once its peak strength is
overpassed —i.e. in the post failure state. If this volume change is measured with the appropriate
equipment, one can relate this volumetric strain to the axial stress (Fig. 2.8.a) or to the axial strain
(Fig. 2.8.b).

— Axial stress vs. Volumetric strain — Axial stress vs. Axial strain
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Fig. 2.8. a) Axial stress versus volumetric strain, and b) axial stress versus axial strain and volumetric
strain versus axial strain in a triaxial compression strength test on granite.

It becomes evident from Fig. 2.8 that the volumetric behavior of the specimen during the test
is not easy to reproduce, let us remember the sign convention: positive means contraction and
negative means expansion. During the initial phase of the test, the specimen reduces its volume
due to the closure of existing micro-cracks and pores; before reaching peak strength, the specimen
begins to rise its volume due to the formation of new micro-cracks; just moments before failure
the specimen gets an actual increase in volume; and, from here onwards, the specimen continues
rising its volume, but it does not rise always at the same rate as well as it cannot do it indefinitely
(Alejano & Alonso, 2005; Zhao & Cai, 2010a).

That is to say rocks present a complex dilatant behavior. Dilatancy can be defined as a change
in volume as results of the shear distortion of an element into a material. A suitable parameter to
measure this dilatant behavior is the dilatancy angle, ¢, which relates the incremental plastic
strains (Alejano & Alonso, 2005). This issue will be analyzed in more detail later on.

However, it should be noted that this kind of tests where the residual state is reached, can only
be performed in press machines stiffer than the specimens tested. This is another reason that could
explain why there are not more tests which correctly capture post-failure behavior and reach a
sufficiently large strain level to ensure the attainment of residual state. This high stiff presses are
expensive and difficult to handle, so they are not common in standard rock mechanics
laboratories. To understand the importance of the stiffness of the machine in the results of the
tests an energy balance approach is convenient (Fig. 2.9).

This Fig. 2.9 shows what happens with a) a less and b) a more stiff press than the tested
specimen. Let us consider the peak strength (A), if the specimen deforms a small amount Ag;,
reaching G, the load should be reduced from o4 to gg. The energy needed to reach that strain is
the area ACDG below the stress-strain curve.

In the case of a stiffer rock specimen, for the same amount of strain (4&;) the press can only
reduce its stress to F and the freed energy by the press is the area ACDF, larger than the energy
needed to deform the test specimen, i.e. there is an excess of energy (+4FE) which gives rise to
the explosive failure of the rock specimen just after reaching its peak strength.

In the case of a stiffer press, the stored energy in the machine is fewer (-4FE) than the needed
to continue the deformation process of the rock specimen, so it is necessary to provide external
energy to continue the test. This necessity for additional energy allows, aided by a servo-control
system, to control the test once peak strength is overcome, obtaining in such a way a reliable
record of the post-failure behavior of the tested specimen. There are some very brittle rocks that



require really high stiff machines and with a very good servo-control in order to correctly study
their post-failure behavior.
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Fig. 2.9. Press stiffness importance in capturing post-failure behavior of rocks (after Ramirez-Oyanguren
& Alejano, 2008).

2.2.4. Post-failure behavior of rock masses

Pre-failure behavior of rock masses has been largely studied and it can be reasonably well
estimated, which is hardly surprising since, usually, engineers try to avoid failure, as Panet (1995)
commented in an analysis of underground excavations. Nonetheless, post-failure behavior has not
been studied in such a detail, first due to the point of view of Panet and second, due to the
complexity of its study, which needs both understanding the occurring phenomena and trying to
set parameters in order to characterize that behavior.

2.2.4.1. General frame of rock masses’ post-failure behavior

Generic post-failure behavior of rocks can be, generally, extrapolated to rock masses. As
commented previously in section 2.2.3, the general approach for post-failure of rock masses is
that proposed by Hoek & Brown (1997), funded in the vast experience of these authors in the
analysis of a great variety of actual case studies. As said before, there are three types (actually
four, but strain-hardening behavior does not usually appear at the stress levels found in rock
engineering works) of post-failure behavior depending on the geotechnical quality of the rock
mass.

These authors propose an elastic-brittle behavior for the rock masses exhibiting a GSI more
than or equal to 75, because they have observed in situ sudden drops in strength. For rock masses
with a GSI lower than 25 they propose an elastic-perfectly-plastic behavior because when
analyzing tunnel failures in this kind of rock masses, they observed great levels of strain without
apparent loss in strength meanwhile there was not a significant change in volume related to this
failure. Finally, for mean quality rock masses (GSI between 25 and 75), the authors propose that
residual failure criterion could be estimated progressively reducing the GSI, consequently this
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criterion would not be equal to that of the rock mass when failing (perfect plasticity) nor null
(elastic-brittleness), so it would be between them, i.e. strain-softening.

Diederichs & Martin (2010) specified even more precisely the range of application of these
behavior models adding the relationship between uniaxial compressive strength of the intact rock
(UCS)) and tensile strength (7). When this relationship (UCS#/T) is lower than 15, which
approximately corresponds to soft rocks, strain-softening behavior model could be extended up
to a GSI equal to 80. On the other hand, if the relationship is larger than 15, which roughly
corresponds to hard rocks, strain-softening behavior should only be applied up to a GSI 65.

Archambault et al. (1993) reviewed the different aspects that contribute to shear failure in
rocks and rock masses, showing that the anastomosed jointed structures (Fig. 2.10) created by
shear or tensile stress and the scale effects in shear strength of rocks and rock masses are the final
result of a progressive softening mechanism of the rock mass.

Micro scale SRTTTLE DUCTILE.

g -

Fig. 2.10. Examples of anastomosed structures at different scales, from millimeters to thousands of
kilometers (Archambault et al., 1993).

According to these authors, when applying shear stresses to rocks and rock masses, simple
heterogeneous shear strains are generated and high values of shear or tensile stresses are
concentrated (high gradients) in narrow bands where the strain is localized or where the tensile
cracks are propagated. These discontinuity zones (due to shear or tensile stress) develop during a
hardening phase which is characterized by an increase in the dilatancy, driving to an expansion
in the shear zone. When the maximum level of shear stress is reached and the discontinuities are
completely propagated, a new phase of unstable softening begins, giving rise to new
discontinuities. When the residual strength is finally reached, anastomosed discontinuities
structures will have formed where the softening mechanism concentrates, moreover, this
phenomenon occurs at any scale (Fig. 2.10) according to the authors.

Fig. 2.11 shows the interdependence between the acting variables in this phenomenon (shear
stress, 7; shear displacement, &,; normal stress, o,; normal displacement, &,) and the scale
dependence (Rodriguez-Dono & Alejano, 2012; after Archambault et al. 1993).
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Fig. 2.11 Scale and normal stress influence on post-failure behavior of rocks and rock masses
(Rodriguez-Dono & Alejano, 2012; after Archambault et al., 1993).

Aimed to find a physical meaning of the dilatancy in soils, concrete and rocks, Vermeer & De
Borst (1984) considered a shear strength test on a soil. The material in the interface between the
two halves of the shear zone forms a thin failure zone. If one consider &, as the normal or vertical
displacement and ¢, as the shear or horizontal displacement, dilation angle of the shear band can
be estimated according to:

tan i 0, 23
= 31
5, (2.31)
Considering this definition, the graph showed by Archambault et al. (1993) (Fig. 2.11) can be
reinterpreted:

e When increasing analysis scale one can observe: (i) peak strength decreases, (ii)
residual strength remains the same, (iii) peak dilatancy decreases, (iv) strains increase
and (v) the material begins dilating for a bigger plastic strain level.

e  When increasing normal stress (g;) for a specific scale: (i) peak and residual strengths
increase, (ii) peak dilatancy decreases and (iii) dilatancy angle becomes null for a
lower plasticity level.

From these observations one can extend the rock masses natural trend for withstanding
softening processes that, in any case, are difficult to generically translate into a model, because it
is not an easy task to get the representative values of all the relevant parameters in order to
correctly simulate that strain-softening behavior (Alejano et al., 2012a).

Having in mind that the introduction of a geotechnical quality index (RMR, GSI, Q...) is only
a way to consider the scale effect, one can observe that this reasoned approach by Archambault
et al. (1993) matches the Hoek & Brown (1988) proposal, because all in all, they point that the
drop of strength between peak and residual failure criteria will be larger at lower scale, i.e. at
better geotechnical quality.

2.2.4.2. Transitional and residual failure critetria

Residual failure criterion for rock masses can be, if not calculated, at least estimated from the
appointments by Hoek & Brown (1997). This failure criterion would be well below the peak



failure criterion of good quality rock masses (GSI > 75) and would tend to be similar to peak
failure criterion of poor quality rock masses (GSI < 25). Following this trend it is reasonable to
believe that average quality rock masses will maintain the form of the failure criterion from that
of the very good quality rock masses to that of the poor quality rock masses (Fig. 2.12).

A
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Increasing GSI
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Fig. 2.12. Idealized post-failure rock mass behavior as depending on GSI.

One of the classical ways to implement this strain-softening behavior model was previously
presented when commenting post-failure behavior of rocks (Eqs. 2.27, 2.28 and 2.29 and Fig. 2.7)
and it could be extrapolated to the case of rock masses.

Another way to estimate residual failure criterion of coal rock masses was proposed by
Duncan-Fama et al. (1995) using a strain-softening behavior model. The authors used the Hoek-
Brown failure criterion for both peak and residual values. Obtained results seem to adapt quite
well to the classic empirical formulae of coal pillar strength as well to certain in situ observations.

2.2.4.3. Plastic parameter

The parameter known as plastic parameter is an indicator of the plastic damage suffered by a
rock. It is null all along the elastic phase and it starts to grow as soon as plastic strain appears,
growing as far as plastic deformation unfolds.

The most traditional way to define a plastic parameter is based on the plastic shear strain:
y? :glp —53” (2.32)

Or an incremental parameter like that used by FLAC code (Itasca, 2011):

1
1 2 1 2 1 2 h
ps _ ) ps _ ps — ps — ps __ ps
Ae —{2(Ag, Agl') + 2(Agm ) + 2(Ag3 Agl) } (2.33)
where:

Agl’ = %(Agl’” + Ag;”)

m

Aé‘f * with j =1, 2, 3 are the increments of the shear strain in the principal directions.
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This formulation of the incremental plastic parameter can be related to one dependent on the

internal variables using:
\/5 }/P
e” =— 1+K +K’ 2.34
3 v Y1+ K, 234)

1+sin
where Kw =—,l//
I—siny
If null dilatancy is considered, this relationship simplifies to:
P
e’ = v (2.35)
2

Although, like Alejano & Alonso (2005) commented, no significant error is incurred if this
relation (eq. 2.34) is considered with variable dilatancy, so the authors recommend to use this
much easier approach.

2.2.4.4. Critical softening parameter

Critical softening parameter, 7*, indicates the level of plastic deformation when the residual
state is reached, i.e. when the residual state of the rock mass begins. To know which value this
parameter should have, it would be necessary to get at least one actual stress-strain curve of the
rock mass, which is a very difficult task, if not impossible.

From the appointments regarding generic rock mass behavior stated by Hoek & Brown (1997),
from the in situ observations and numerical simulations of coal pillars by Duncan-Fama et al.
(1995), and from the laboratory observations of different sized coal specimens by Medhurst &
Brown (1998), it can be proposed that the critical softening parameter can vary between 0.01 and
0.001 strains, i.e. between 1 and 0.1 % of the axial strain.

2.2.4.5. Flow rule

It was already commented in section 2.2.3 that a flow rule is the law governing the way strains
evolve once peak failure criterion is reached. It was also commented that an associated flow rule
takes place when the flow rule is equal to the failure criterion at every moment and non-associated
in any other case.

Therefore, it is necessary to know if the flow rule is associated or non-associated and, in the
latter case, it is also necessary to know the shape and parameters of this flow rule —which in its
simple form can be related to a Mohr-Coulomb equivalent— characterized by the parameter
denoted as dilation angle and explained in the following section. It has to be pointed out that there
is controversy over this subject. Some prestigious authors (Hoek, Fairhurst) indicate that the
efforts should be put in non-associated flow rules and, particularly for soft rock masses, a null or
almost null dilatancy should be considered; while other authors specialized in localization
(Vardoulakis & Sulem, 1995) are able to show that a frictional material with a non-associated
flow rule cannot be numerically stable, so they propose associated flow rules (Carranza-Torres,
2000).

Regarding dilation angle, ¢, as a first approach and since there was an evident lack of data,
Hoek & Brown (1997), propose values dependent on the friction angle, ¢, and the quality of the
rock mass, /= @/ 4 in the case of competent rock masses, (/= ¢/ 8 in the case of average quality
rock masses and, ¢ = 0 in the case of soft rock masses, the latter corresponds to the case of
constant volume deformation.

In order to analyze the general behavior of a rock mass, one should suppose that the rock mass
will show a strain-softening behavior, so in addition to the peak failure criterion, one should add
a residual failure criterion, a transition relationship and a flow rule.



2.2.4.6. Alejano & Alonso dilatancy model (2005)

Alejano & Alonso (2005) presented a review of a number of performed studies and a fit for a
number of already performed laboratory tests in order to propose a reasonable estimation model
regarding the dilation angle, aimed to its implementation in numerical methods. The proposed
dilation angle estimation model, showed dependencies both on confining stress and on plastic
shear strain and, indirectly, scale dependency was also included through the friction angle,
obtained from the Hoek-Brown failure criterion.

This model was founded on the reinterpretation of triaxial strength test results using a servo-
controlled press performing unloading-reloading cycles and direct measure of the volumetric
strain (by means of displaced oil) on rock specimens of different sizes (Medhurst, 1996) that allow
to get test results as those showed in next figure (Fig. 2.13).
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Fig. 2.13. Stress-strain relationships for a compression strength test on a strain-softening coal sample
with four unloading-reloading cycles, three of them in the post-failure zone. The bottom graph shows the
irrecoverable strain locus or the curve that relates the plastic components of the volumetric and axial
strain as well as the formulation on which it is based (Alejano & Alonso, 2005, after Medhurst, 1996).

Irrecoverable strain locus (&7 - €7 curve) can be obtained for each test, and from that curve,
dilatancy angle can be calculated using the equation proposed by Vermeer & De Borst (1984):
. g’
=arcsin ——— 2.36
v -2:¢l +¢&r (2.36)
It has to be noted that the Alejano & Alonso (2005) proposed model discards various inelastic

(but not plastic) phenomena that occur during strength tests before peak strength is reached, i.e.
in the elastic zone:

i.  Initial perpendicular to the major principal stress micro-cracks closure, which give
that initial concave shape to the axial stress-axial strain curve.

ii.  The phase between stable propagation of cracks (onset of dilatancy or Crack Initiation,
CI) and unstable propagation of cracks (or Crack Damage, CD), where the axial strain
is elastic, but radial strain is not, which would give rise to, due to the equation used,
dilation angles tending to minus infinity.

iii.  Final phase before failure occurs, between long term strength (or CD) and the
instantaneous or ultimate strength, also called maximum or peak strength, where a



hardening behavior appears and the micro-cracks coalesce, giving rise to the macro-
cracks that produce the failure.

Discarding these phenomena allows the interpretation of test results although some
inaccuracies arise that avert the model from the actual behavior, but it does not make an important
difference if working with secant elastic modulus instead of tangent one. This difference between
the model and the reality can be observed in Fig. 2.14.
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Fig. 2.14. Actual stress-strain relationships for a compression strength test on a strain-softening coal
sample and ideal stress-strain relationships as proposed by Alejano & Alonso (2005) dilatancy model.
From top to bottom: axial stress vs. axial strain; plastic and total volumetric strain vs. total axial strain;
and dilatancy angle as function of the plastic axial strain (After Alejano & Alonso, 2005).

Alejano & Alonso (2005) proposed a dilatancy angle model divided in two parts, first it is
calculated the peak dilatancy angle:

— L lo _G%a (2.37
V peak l+logo,, s 0,+0.1 A7)
And then, the dilatancy angle decay is calculated as the plasticity grows:
— _1) ;T 2.38
K, =1+(K,_ ~1Je (2.38)
where:
1+sinl//(0'3,7/”)
v = (2.39)

- l—sinl//(a3,7/”)

Dilation angle can be obtained for each stress-strain situation depending on the confining
stress, o3 (MPa), and the plastic shear strain, y” (mstr.), from an initial value of peak friction angle
corresponding to that stress and to the specimen scale, ¢ (°), the uniaxial compressive strength of
the intact rock, o.; (MPa), and a parameter that governs the decrease of the dilatancy with the
plasticity level, called y?* (mstr.).

[\
(9]



Alejano & Alonso (2005) compare their model results to the obtained results from Medhurst
(1996) tests getting a reasonably good fit of the dilatancy behavior on coal specimens and other
sedimentary rocks (Farmer, 1983) regarding both, peak dilatancy angle and its decay as the
plasticity moves forward.

It has to be pointed out that the model requires the parameter y”*, which depends on the rock
type, but the authors give estimated values of this parameter for the studied rocks.

The main advantages of this model are that it does not increase the number of needed
parameters in order to simulate a rock mass (only a parameter, y”*, is needed, instead of a constant
dilation angle) and, despite its simplicity, it allows to get more realistic values of dilatancy as
depending on confining stress, plasticity level and for different scales, so it can be implemented
into commonly used numerical codes.

The results obtained during the compression strength tests performed for the present
dissertation have been fitted to this model and, although the model is capable to capture the correct
dilation angle decay with plasticity, it is not able to accurately compute peak dilation angle,
systematically underestimating this value for the tested rocks.

2.2.4.7. Zhao & Cai dilatancy model (2010a)

Zhao & Cai (2010a) introduced a dilatancy angle model much more complex than that of
Alejano & Alonso (2005), using an empirical approach, they found a mathematical function
depending on the plastic shear strain that fits very well the test results:

a-b-(e"”p —e 7" )
c—b
where a, b and c¢ are fitting coefficients and y” is the plastic shear strain obtained from the internal

variables (eq. 2.27) in %.

Coefficients a, b and ¢ control the shape of the curve and, although this control is not absolutely
independent, each coefficient mainly affects one aspect of the curve, i.e. a coefficient mainly
controls peak dilation angle value, b coefficient mainly controls the position of the peak dilation
angle and ¢ coefficient mainly controls the evolution of the dilation angle.

= (2.40)

The model also considers the confining stress dependence by means of another three equations
that modify the values of the coefficients a, b and c. These equations have been obtained, again,
using an empirical approach:

-0

a=a +a,e” (2.41)
b=b+bye” (2.42)
c=c¢ +c¢,05 (2.43)

where a;, b; and ¢; with i = 1, 2, 3 are, again, fitting coefficients and o3 is the confining stress.

Using this approach, the authors were able to characterize the dilatancy angle behavior of
seven different rocks and they also grouped the nine needed coefficients as a function of the grain
size of the rock (Fig. 2.15).
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Fig. 2.15. Dilation angle behavior of the seven rocks studied by Zhao & Cai (2010a) as function of the
plastic shear strain for a confining pressure of 1 MPa, and range of values for the nine coefficients
grouped by grain size.

Finally, the authors implemented their model into FLAC (Itasca, 2011) getting a reasonably
good representation of the actual test results.

The authors (Zhao & Cai, 2010b) have also applied this mobilized dilation angle model for
predicting the failure shape of a tunnel and the rock mass displacement distributions showing that
their simulations are in good agreement with the field measurement results.

It has to be pointed out that even though the model is capable to well capture the dilation angle
behavior, the inherent complexity in adjusting the nine needed coefficients which do not have a
physical meaning and also considering that the solution is not univocal from a practical point of
view —different sets of coefficients can result in almost the same fit— make the model
unpractical for a number of rock engineering purposes.

2.2.4.8. Walton & Diederichs dilatancy model (2015a)

Walton & Diederichs (2015a) have recently proposed a new dilation model (more complex
than that of Alejano & Alonso (2005), but less complex than that of Zhao & Cai (2010a)) that
requires between four and seven parameters (ap, &@’, ¥, B, ', y and »’) —depending on the
available data and rock idiosyncrasy— to completely characterize the dilatational behavior. It is
mathematically based in a piecewise function that separates pre-mobilization of dilatancy,
mobilization of peak dilatancy and post-mobilization of dilatancy. This division allows to
consider each part separately, to perform a detailed study of the influence of each parameter on
the model and to study correlations with other geomechanical parameters.

The model is defined by the following piecewise function:
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being:
w the dilation angle.
o3 the confining stress.
y? the plastic shear strain.
Wpear the peak dilation angle.
7w a parameter that defines the plastic shear strain at which peak dilation is achieved.

ap and «’ are parameters that determine the curvature of the pre-mobilization portion of the
model for unconfined and confined conditions respectively.

w and y’ are parameters that define the decay rate of the dilation angle for unconfined and
confined conditions respectively.

®pear the peak friction angle.
UCS the uniaxial compressive strength of intact rock as obtained from the laboratory.

fo and S’ are parameters that define the dependence of the peak dilation angle with o3 for low
and high confining stresses respectively. The authors (Walton & Diederichs, 2015a) define what
are low and high confining stresses comparing the confinement with an exponential function
depending on £ and 5.

The authors give some indications on the range of variability of each of the parameters
depending on the rock type. It has to be noted that due to the novelty of the model, the parameters
still have to be checked and its application range has to be determined.



As part of his Ph.D. thesis Gabriel Walton (2014, 2015b) applied this new dilation model to
the prediction of the yield and displacements of a pillar in a deep underground mine. The use of
this variable dilation model was able to correlate well with the measurements performed into a
very deep room and pillar mine in Canada, where yield of the pillars took place for a significant
time, with evolving stress conditions (increase of mining in the surroundings of the monitored
pillar) and in other excavations where extensometric data were available (Walton et al. 2015b).

It is relevant to remark that whereas the Alejano & Alonso (2005) dilatancy model starts to
count plasticity (y?) from peak strength, both the models by Zhao & Cai (2010a) and Walton &
Diederichs (2015a) start counting y 7 from the called Crack Damage point (CD) or point of
unstable propagation of cracking. Therefore, both these approaches set ” = 0 after the stress level
corresponding to CD, whereas Alejano & Alonso (2005) approach considers peak stress as the
starting point of plastic strains (Fig. 2.16).
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Fig. 2.16. Differences between the dilatancy models by Alejano & Alonso (2005) and those by Zhao &
Cai (2010a) and Walton & Diederichs (2015a) regarding the starting point for counting the plastic
parameter.

Walton & Diederichs’ (2015a) approach was partially derived from the results presented in
the core of this dissertation (Chapter 3). It reflects some of the observations associated to granite
testing, showing that peak dilatancy values were well below peak friction angle estimates as
suggested by Alejano & Alonso (2005).
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3. Dilation in granite during servo-controlled
strength tests

3.1. Introduction

Granites, very common in Galicia (NW of Spain) as in many other parts of the globe, are
typically used as slabs and plaques in construction and civil engineering works and also as
aggregate. Underground excavations in granite rock masses for civil engineering and mining
applications are also very common, so a better understanding of granite behavior should
contribute to improving design capabilities, construction techniques and safety in the execution
of excavations in this type of rock mass.

In the late 1960s and early 1970s, a number of authors (Hudson et al., 1971a; Rummel &
Fairhurst, 1970; Wawersik & Brace, 1971; Wawersik & Fairhurst, 1970) were able to study the
behavior of rock failure beyond the peak of the stress-strain curve using a closed loop servo-
controlled test machine. In this period also, Crouch (1970) improved existing testing capabilities
in experimentally determining volumetric strain in the post-failure range of compressive tests.
Since then, many other authors (e.g., Medhurst in his doctoral thesis, 1996; Elliot & Brown, 1985;
Cipullo et al., 1985) have performed tests in both soft and hard rocks (including coal, limestone,
marble, sandstone, quartzite and granite) aimed at obtaining complete stress-strain curves.
Although a good knowledge of this curve is of paramount relevance to rock mechanics
(Wawersik, 1975; Singh, 1997), it is no easy task to estimate it at the scale of the rock mass.

Since avoiding rock mass failure is usually a major rock mechanics goal, knowledge of what
happens after failure could seem to be of little or no interest. However, a number of authors
(Medhurst & Brown, 1998; Hudson et al., 1971b) have indicated that knowing the post-failure
plastic parameters for rock masses is necessary to achieve modelling objectives, understand
certain rock behavior mechanisms and estimate the extent of plastic zones around excavations.

Moreover, the use of numerical modelling has increased substantially in recent years and not
only relies on reliable input parameters but also opens up possibilities for more complex and
realistic models. Accordingly, now more than ever, it is important to be able to provide realistic
representations of the complete stress-strain curve and to correctly characterize rock behavior in
numerical models.

A reasonable parameter for evaluating plastic behavior is the dilation angle, ¢. However, due
to inherent difficulties in obtaining it, dilatancy has seldom been taken into consideration in initial
numerical models; and when it was considered, the approach, typically poorly developed and
simplistic, generally consisted of an associated flow rule (friction angle made equal to the dilation
angle, ¢ = ) or a non-associated flow rule (usually considering ¢ = 0). Neither approach is
realistic enough (Jaeger et al., 2007; Price & Farmer, 1979) and so could result in possible
calculation errors.

In an attempt to provide a more correct approach to dilatancy, a number of authors (Kudoh et
al., 1999; Vermeer & de Borst, 1984; Detournay, 1986; Yuan & Harrison, 2004; Alejano &
Alonso, 2005; Zhao & Cai, 2010a; Cook, 1970; Holcomb, 1978) have proposed parameters or
models that fit the dilatant behavior of rocks. The need for real data to compare with modelling
results is a common issue in all of these studies and serves as the starting point for this study. In
other words, for samples of three granitic rocks, actual confined and unconfined stress test data
for a press with fully servo-controlled loading are provided.

In recent years, a number of authors have argued that some rocks and rock masses behave in
a strain-softening manner (Hoek & Brown, 1997), which means that, after achieving maximum
stress, they can still withstand some load. Strain-softening is founded in the incremental theory
of plasticity and has been developed to model plastic deformation processes. One of the main
features of strain-softening is that the failure criterion and the plastic potential do not only depend

A version of this chapter has been published with the following citation: Arzuda, J., & Alejano, L. R. 2013. Dilation in
granite according to servo-controlled strength tests. International Journal of Rock Mechanics and Mining Sciences,
61, 43-56.



on the stress tensor, oy, but also on a plastic parameter —generically denoted as 77 or y”— which
takes account for the processes and mode of strength transition, in such a way that this plastic
parameter is null in the elastic region, and if 77 > 0, the strain softening appears until the residual
strength is reached. Thus, the behavior model is plastic-strain-dependent.

In order to characterize a strain-softening rock or rock mass, the following basic information
is needed: (a) Elastic parameters; (b) Peak, evolving and residual failure criteria; and (c) Post-
failure deformability parameters.

To completely characterize post-failure behavior, one needs to know not only the evolving and
residual failure criteria, but also the parameters that link the post-failure stress-strain relationship
and the relationship between strains. A correct description could be achieved, for instance, if one
knows either (a) the dilation angle and the drop modulus (computed as the mean negative slope
of the curve g; — & after peak strength and in the first 50% of softening) or (b) the dilatancy and
the plastic parameter values for which dilatancy and evolving failure criterion are achieved.

Due to the complex nature of this kind of behavior, standard presses cannot properly compute
rock sample strain once peak strength is surpassed. Therefore, a press with servo-controlled
loading capable of controlling post-failure processes is necessary to study this second part of
stress-strain curves.

3.2. Testing equipment

For previous studies the John P. Harrison Rock Mechanics’ Laboratory had set up a servo-
control system in a standard 200-tonne press, in such a way that the servo could control the loading
rate in terms of stress or strain and perform different types of tests as required, for instance, tests
with a number of unloading-reloading cycles (Fig. 3.1). Quite reproducible post-failure results
were obtained for unconfined compressive tests in moderately weathered granite (Alejano et al.,
2009a).

Developed to classify the shape of the complete stress-strain curve for a particular rock
according to its strain monotonicity was the concept of classes, with Class I indicating
monotonicity and Class II indicating non-monotonicity. Various authors (Hudson et al., 1972)
showed that this may depend on the stress-path and the particular strain being controlled. In
reference to this dissertation, the tested granites were shown to be Class II under uniaxial
compression; however, under confined conditions they could be considered as Class I rocks so
their post-failure behavior could be readily analyzed. Due to the strain velocity capacity of the
press, the initial stress drop of post-failure behavior of uniaxial tests could not be considered
reliable in terms of stress control; however the relationship between strains (axial and radial)
represented actual volumetric relationships. The reliability of the post-failure part of the tests was
analyzed by performing unloading-reloading cycles to analyze whether the stress path represented
actual rock behavior or merely reflected press stiffness.

Axial strain was measured by means of linear variable differential transformers (LVDTs)
attached to the lower press platen using industrial magnets. For unconfined tests, radial strain was
also measured by an apparatus fixed to the rock sample in such a way that two measurements of
the variation in diameter were obtained. Although it is also possible to measure radial strain with
a chain, which provides homogeneous results, it was difficult to adapt it to our system and so such
a chain was not used. The use of strain gauges was also ruled out due to the limited range in
measuring strain —too large in the post-failure stage— and due to the occurrence of localized
failure phenomena, as also pointed out by other authors (Zhao & Cai, 2010a).

A next step in improving the laboratory equipment was to install a servo-control for confining
stress in triaxial tests to ensure not only confining stress control and modification during testing
but also to measure the volume of hydraulic fluid shifted into or out of Hoek’s triaxial cell during
triaxial testing —as proposed by Crouch (1970) and later modified and applied by Cipullo et al.
(1985), Wawersik (1975), Singh (1997), Medhurst & Brown (1998) and others. Using water as a
hydraulic fluid and under the reasonably realistic assumption of incompressibility, it is possible
to relate the displaced volume of hydraulic fluid to the volumetric strain of the rock sample.
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Programming step 1 Programming step 2 Programming step 3
140 - 140 - 140 -
120 4 120 - 120 -
100 100 - 100 -
80 1 80 80 -
60 60 - 60
40 ] 40 4 40 A
20 20 - 20 A

R — 0 ; : 0 : ;

0 10 20 0 10 20 0 10 20

Programming step 4 Programming step 5 Programming step 6
140 - 140 - 140 -
120 120 4 120
100 A 100 4 100 -
60 - 60 - 60 -
40 A 40 4 40 A
20 4 20 A 20 4

0 T T 0 T T 0 T T

0 10 20 0 10 20 0 10 20

Programming step 7 Programming steps 8 to 12 Programming step 13
140 - 140 4 140 -
120 A 120 4 120 A
100 100 + 100
80 80 A 80
60 4 60 A 60 +
40 A 40 4 40 A
20 A 20 A 20 4

0 T T 0 T T 0 T T

0 10 20 0 10 20 0 10 20

Fig. 3.1. Evolution of a servo-controlled test based on a given strain function. Major principal stress in
the ordinate axis and axial strain in the abscissa axis.

The new equipment consisted of a computer-controlled servo, which, like a syringe, pumps a
small-diameter plunger inside a tube and so controls water pressure; and since the tube is
connected to the Hoek’s cell, confining stress during the triaxial tests is also controlled. Confining
stress was measured by a simple pressure sensor at the end of the tube.

As for measuring the volume of water entering or leaving the Hoek’s cell, it is known how
much the plunger is going forwards or backwards inside the tube because the servo turn is
controlled so as to modify pressure when necessary. Since both inner diameter and plunger
displacement are known, it is possible to calculate the volume of displaced water.

It is important to note that the equipment measures the amount of hydraulic fluid displaced
into or out of the Hoek’s cell; it, thus, does not measure volumetric strain itself but its lateral
component. This lateral component of volumetric strain can be related to volumetric strain as
follows (Farmer, 1983):

_A_V 0 :@ — Z_E
&= (%) % {ﬂfo (;z EH (3.1)

where V) is the volume of water displaced; V is the original rock sample volume; f is the
compressibility factor for the hydraulic fluid, in our case, reasonably assumed to be equal to one
since water was used as the hydraulic fluid; 7 is the radius of the Hoek’s cell; F is the axial force
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acting on the ram; E is the elasticity modulus of the ram’s steel; and /is the measured axial
displacement.

We can only measure the addition of axial displacements of the ram and of the rock specimen
together. However, it was possible to calculate the axial strain, and subsequently the axial
displacement, of the ram since both the elasticity modulus of the steel and force at every moment
of the tests were known. In this way the axial strain of the rock specimen can be computed.

The confining equipment allowed for a modest theoretical confining pressure of up to 20 MPa,
which, if this limit was reached, locked the system. The latter turned out to be an issue since,
when failure occurred, a shock wave was generated that raised pressure rapidly. This increase in
pressure could lock the system if more than 14 MPa were programmed as confining stress for the
test. For this reason, triaxial tests for up to 12 MPa were performed, although some rock samples
tested ‘out-of-range’ at 15 MPa and 14 MPa yielded some valuable data.

To minimize errors arising from inaccurate sample shapes (a slight lack of parallelism between
faces or a slight lack of perpendicularity between the axis and faces), the laboratory press had a
spherical seat in the upper platen but not in the lower platen. To avoid inaccuracies derived from
sample shape, a set of steel ball-and-socket joints was added below the core sample.

Since LVDTs were used between the press platens and the strain of steel is significant
compared to that of rock, steel strain had to be subtracted from the measured strains. This
important aspect also had to be considered in triaxial tests.

Drilling equipment and circular diamond saws were used to carve the rock specimens, all in
accordance with rock mechanics standards (ISRM, 2007).

3.3. Tested rocks

An experimental programme was planned to study three granitic rocks locally known as
Amarelo Pais, Blanco Mera and Vilachan, all hard rocks extensively used as building and
ornamental materials.

Amarelo Pais, classified as slightly weathered granite, has a tan color and is a coarse-grained
hard rock (1-3 mm). Blanco Mera is a bright white-colored granite, also a coarse-grained hard
rock (1-6 mm). Vilachén, classified as a micaceous granite, is a pale-colored, medium-grained
hard rock (0.5-1 mm).

To evaluate the geological and chemical nature of the rocks, samples were characterized using
an optical microscope. Thin sections of rock (Fig. 3.2) were cut and prepared for study, then
exposed to white and polarized light under a petrographic optical microscope in order to analyze
the samples and perform a modal analysis. These thin sections could be described quantitatively
by point counting and qualitatively in terms of dominant minerals. The modal analysis of the
transparent dominant minerals in the three rocks is presented in Table 3.1.

Amarelo Pais Blanco Mera Vilachan

=78

. et

Fig. 3.2. Petrographic study of rock samples showing pictures of hand samples and thin-section
photographs in white and polarized light for the three granites studied.
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Table 3.1. Quantitative modal analysis of the studied rocks derived from petrography analysis of thin

sections.
Mineral phases Modal analysis (%) .
Amarelo Pais Blanco Mera Vilachan

Quartz 26 20 41
Alkaline feldspar 25 27 15
Plagioclase 22 35 12
Biotite 6 5 4
Muscovite 18 7 16
Sericite 1 1 -
Chlorite - 4 3
Opaques 1 - -
Accessories <1 <1 9

3.4. Testing

Samples were cut from 40 cm cubes taken from the sawing facilities of a rock supplier. Some
30 specimens measuring 54 mm in diameter (NX size) were cut for each rock type in order to
have a reliable number of samples to test.

Unconfined and confined (0—15 MPa) compression strength tests were performed on around
30 samples representing each rock type. Other tests, namely, density, tilt and Brazilian tests,
aimed at characterizing the rocks were also performed, always applying the best rock mechanics
standards (ISRM, 2007). Some 200 non-destructive and destructive tests were performed in total.

3.4.1. Non-destructive tests

3.4.1.1. Density tests

In order to determine density, twelve tests were performed on Amarelo Pais, fourteen tests on
Blanco Mera, and nineteen tests on Vilachan. The values of the means and standard deviations
for the tests for each rock are presented in Table 3.2.

3.4.1.2. Tilt tests

The recommended method for characterizing the basic friction angle of a smooth joint in rock
mechanics standards (ISRM, 2007) is based on shear strength tests. However, applying the
definition for this parameter, as proposed by Barton (1976), it is possible to obtain the friction
angle as the inclination of a sawed rock slab placed over another slab of the same rock at the point
when the upper slab starts to slide along the lower slab. Using this method, eighteen tests were
performed on Amarelo Pais, twelve tests on Blanco Mera, and six tests on Vilachan (Table 3.2).

The John P. Harrison Rock Mechanics’ Laboratory has an automated tilt table developed by
the author, his supervisor and other laboratory mates that served to perform the tests.

3.4.2. Destructive tests
3.4.2.1. Brazilian tests
Standard Brazilian tests were performed in order to obtain the tensile strength of the three

rocks studied. Since this kind of test is easy and rapid, a large number of tests were performed on
each rock: 26 on Amarelo Pais, 20 on Blanco Mera, and 19 on Vilachan (Table 3.2).



Table 3.2. Summarized results of density, tilt and Brazilian tests for the three granitic rocks studied
(mean results, and standard deviation between brackets).

Rock Density (g/cm’) & (°) T (MPa)

Amarelo Pais 2.61 (0.01) 29 (2) 6.65 (1.05)
Blanco Mera 2.60 (0.01) 33(3) 6.12 (0.99)
Vilachan 2.59(0.01) 28 (2) 6.93 (0.72)

3.4.2.2. Uniaxial compressive tests

A total of thirty-six uniaxial compressive tests were performed. Pictures of all samples were
taken before and after testing and, if a shear band occurred, its orientation was measured.

As explained above, in these tests the granites were characterized as having Class II behavior.
Hence, after failure, the stress-strain relations obtained were not significant, due to the extremely
brittle nature of the rock samples in the press: usually the rock crushed in an explosive manner,
splitting the sample into fragments. Whenever possible, however, the parameters were estimated.
Results for the unconfined strength tests are presented in Table 3.3 to Table 3.5, together with
confined strength test results.

3.4.2.1. Triaxial tests

A total of fifty-four triaxial compressive tests were performed. Like in the case of uniaxial
tests, pictures of all specimens were taken before and after testing and, if a shear band occurred,
its orientation was measured. Typical results for confined strength tests are shown in Fig. 3.3. The
first graph shows how to obtain the main geotechnical parameters: peak strength, o/7***; residual
strength, o,"“; apparent elastic Young’s modulus, E£; apparent Poisson’s ratio, v; and drop
modulus, M.

First to be observed from Fig. 3.3 is the high degree of radial deformation occurring for the
peak strength level in the three granitic rocks. For some granites (for instance, Lac du Bonnet as
described in Martin & Read, 1996), the radial strain at peak corresponds to roughly half the axial
strain; for the rocks studied here, the peak radial and axial strain are roughly equal.

It was previously commented that it is not possible in triaxial tests to directly measure radial
deformation, as the use of strain gauges has to be ruled out. It is possible, however, to measure
volumetric strain and, based on this value, to estimate the radial deformation using the following
formula (Vermeer & de Borst, 1984):

£,=¢€+26 > & = & ;gl (3.2)
We found that a more accurate calculation is provided as follows:
l-¢,
&=1- (3.3)
I-¢

The derivation of the estimate and the accuracy of the approach used for Eq. (3.3) are presented
in Appendix A. For the analyzed tests the difference between the two formulations is not relevant.

It was now possible to obtain the complete stress-strain curves for each performed test (as
shown in Fig. 3.3). It was also possible to compare the curves for each rock in such a way as to
view the main deformational behavior tendencies according to increasing confining pressure, as
shown in Fig. 3.4. Table 3.3 to Table 3.5 summarize the results obtained for the uniaxial and
triaxial compression tests on granitic samples. These results are also shown in Appendix B.
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Table 3.3. Results of testing on Amarelo Pais granite samples.

O3 o o/ E v M
Sample
MPa MPa MPa GPa - GPa

A1l RCS 0 77.50 -- 21.67 0.13 --
A2 RCS 0 84.64 -- 22.36 0.19 --
A3 RCS 0 76.66 2 17.63 0.20 --
A4 RCS 0 75.60 5 22.92 0.18 --
A5 RCS 0 80.34 2 20.27 0.15 --
A6 RCS 0 76.91 2 18.59 0.18 --
A7 RCS 0 68.47 -- 17.60 0.21 --
A8 RCS 0 77.19 2 19.30 0.17 --
A9 RCS 0 74.85 2 18.97 0.17 --
A10 RCS 0 76.17 -- 16.35 0.19 --
Al1 RCS 0 80.08 -- 15.95 0.16 --
A12 RCS 0 74.74 1 16.00 0.15 -19.11
Al TRX 2 130.42 32 30.54 0.19 -17.39
A2 TRX 2 117.33 30 23.40 0.19 -16.00
A3 TRX 2 112.29 27 22.32 0.22 -16.67
A4 TRX 2 110.31 31 23.95 0.20 -17.65
A5 TRX 4 134.20 44 25.06 0.19 -21.06
A6 TRX 4 130.02 43 24.36 0.22 -17.39
A7 TRX 4 129.89 54 25.25 0.20 -17.15
A8 TRX 4 129.50 46 23.84 0.22 -22.10
A9 TRX 6 153.90 51 27.48 0.21 -21.05
A10 TRX 6 170.72 45 30.02 0.21 -19.55
A1l TRX 6 175.43 48 30.01 0.20 -19.05
A12 TRX 6 169.00 51 30.40 0.18 -17.57
A13 TRX 10 192.75 80 28.06 0.22 -19.03
A14 TRX 10 213.99 75 35.49 0.19 -21.69
Al15 TRX 10 200.71 87 33.69 0.15 -21.74
Al16 TRX 10 193.09 68 29.45 0.21 -20.18
A17 TRX 12 214.99 81 31.20 0.20 -18.52
A18 TRX 12 230.14 80 36.08 0.20 -20.00
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Table 3.4. Results of testing on Blanco Mera granite samples.

03 ot o E v M
Sample
MPa MPa MPa GPa - GPa
B1 RCS 0 125.77 -- 33.11 0.15 --
B2 RCS 0 116.50 -- 33.83 0.18 --
B3 RCS 0 110.18 -- 29.48 0.15 --
B4 RCS 0 100,48 -- 27.63 0.10 --
B5 RCS 0 121,32 -- 34.14 0.17 --
B6 RCS 0 79.26 -- 29.44 -- --
B7 RCS 0 84.57 2 25.40 0.16 --
B8 RCS 0 110.77 -- 33.66 0.14 --
B9 RCS 0 106.66 -- 25.17 0.08 --
B10 RCS 0 118.26 -- 33.26 0.13 --
B11 RCS 0 111.43 -- 31.64 0.16 --
B12 RCS 0 125.34 -- 30.88 0.10 --
B1 TRX 2 187.03 30 42.86 0.16 -25.00
B2 TRX 2 183.41 42 44.19 0.17 -21.05
B3 TRX 2 172.44 40 42.18 0.16 -23.52
B4 TRX 2 177.82 34 43.07 0.18 -18.47
B5 TRX 4 216.71 38 45.86 0.15 -18.38
B6 TRX 4 212.58 50 42.82 0.16 -17.24
B7 TRX 4 196.84 52 42.65 0.18 -21.52
B8 TRX 4 214.13 54 45.55 0.17 -22.72
B9 TRX 6 235.39 65 42.86 0.18 -24.46
B10 TRX 6 228.20 51 43.41 0.18 -20.83
B11 TRX 6 218.35 70 44.10 0.17 -17.24
B12 TRX 6 240.16 74 45.17 0.20 -18.97
B13 TRX 10 282.30 93 47.28 0.15 -22.05
B14 TRX 10 252.18 74 41.49 0.21 -22.56
B15 TRX 10 259.22 115 46.17 0.16 -21.74
B16 TRX 10 269.80 85 47.12 0.17 -22.25
B17 TRX 14 311.62 180 46.96 0.18 -21.82
B18 TRX 12 307.62 112 48.26 0.15 -19.76
B19 TRX 12 291.80 82 44.66 0.17 -24.88




Table 3.5 Results of testing on Vilachdn granite samples.

o3 ook o E v M
Sample
MPa MPa MPa GPa - GPa
C1 RCS 0 127.45 -- 27.27 0.11 --
C2 RCS 0 116.92 -- 25.84 0.17 --
C3 RCS 0 114.17 -- 22.92 -- --
C4 RCS 0 121.22 -- 23.09 0.19 --
C5 RCS 0 119.09 -- 25.53 0.15 --
C6 RCS 0 104.30 -- 21.13 0.17 --
C7RCS 0 129.18 -- 23.51 0.12 --
C8 RCS 0 117.96 -- 23.07 0.28 --
CI9 RCS 0 113.53 -- 21.88 0.19 --
C10 RCS 0 106.61 -- 21.03 0.14 --
C11 RCS 0 113.60 -- 24.09 0.20 --
C12 RCS 0 108.77 -- 22.39 0.11 --
C1 TRX 2 146.25 -- 24.00 0.11 -13.37
C2 TRX 2 141.99 40 23.16 0.17 -15.32
C3 TRX 2 14091 34 24.45 0.20 -17.97
C4 TRX 2 146.13 36 24.14 0.22 -18.18
C5 TRX 4 169.53 52 29.41 0.17 -15.68
C6 TRX 4 160.13 53 27.82 0.18 -19.05
C7 TRX 6 185.76 50 29.27 -- -15.29
C8 TRX 4 161.01 43 27.21 0.22 -15.49
C9 TRX 4 160.88 35 27.04 0.20 -20.07
Cl11 TRX 6 187.84 49 27.79 0.19 -19.17
C12 TRX 6 195.46 47 31.70 0.18 -19.05
C13 TRX 10 239.61 71 33.10 0.20 -22.03
C14 TRX 10 241.22 70 34.85 0.18 -21.51
C15 TRX 10 209.77 64 27.82 0.21 -22.72
Cl16 TRX 10 231.61 63 30.23 0.17 -19.84
C17 TRX 15 266.22 -- 32.12 0.14 -21.74
C18 TRX 15 259.45 -- 31.29 0.19 -21.13
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Confined servo-controlled test
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Fig. 3.3. Stress-strain graph for confined compression test on granitic rock samples. In the upper left
graph it is shown how to obtain the values for peak and residual strength (o/°* and o/%), apparent
elastic Young’s modulus (E), apparent Poisson’s ratio (v) and drop modulus (M).
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3.5. Interpretation of results

3.5.1. Classic parameters

The results obtained in Table 3.3 to Table 3.5 were analyzed in order to deduce the main
geomechanical features of the rocks. First, peak and residual Mohr-Coulomb (M-C) and Hoek-
Brown (H-B) failure criteria were fitted to the peak and residual strength values obtained as a
result of testing. These fits, together with the original test data, are presented in Fig. 3.5 and the
main results are shown in Table 3.6 to Table 3.8. Residual strength has been generally estimated
as the lowest principal strength value observed in each test. In tests where final stress and strain
values were associated with an unloading cycle, the residual strength value was approximated.

Peak and residual test results and M-C and H-B failure criteria fit
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Fig. 3.5. Peak and residual strength test results and fitted to Hoek-Brown and Mohr-Coulomb failure

criteria.

Table 3.6. Geomechanical results for Amarelo Pais (m subscript refers to average values).

Hoek-Brown

Mohr-Coulomb

o7 =76.59 MPa

o/ = 85.45 MPa

Peak _ Gpear = 57.59°
Strength (e Cocat = 12.42 MPa
' R*=0.999
s 0% =20.71 MPa
Residual o =1 ‘;fﬁ iVIP : Bres = 43.04°
strength 1};12 -0 979 Cres = 4.50 MPa
' R> =0.994
O Otm = 6.65 MPa
E E=126"03+19.92 GPa Enmos-0=18.97 GPa
v Vu=0.19
M Mm,03¢0 =-19.73 GPa
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Table 3.7. Geomechanical results for Blanco Mera (m subscript refers to average values).

Hoek-Brown Mohr-Coulomb
o/ =137.96 MPa

o/ = 135.52 MPa

Peak b Boear = 59.52°
Strength e Cpeat = 18.79 MPa
' R>=0.998
ros o/“=24.27 MPa
Residual o =1 é; g;\’”)a Bes = 46.84°
strength 1’?2_: 0,088 Cres = 4.80 MPa
' R?=10.998
o owm = 6.12 MPa
E E=12805+33.97 GPa Eno3-0=30.64 GPa
v Vu=0.16
M My o5.0 = —21.30 GPa

Table 3.8. Geomechanical results for Vilachan (m subscript refers to average values).

Hoek-Brown Mohr-Coulomb
o/ =122.65 MPa

o/ =116.29 MPa

Peak - Bear = 54.91°
Strength o %8;91 Cpeat = 19.39 MPa
' R>=0.999
s o =28.90 MPa
Residual o - isézggMPa Bres = 35.38°
strength Rn;: 0 9 44 Cres = 7.46 MPa
' R’=0.992
o Gim = 6.93 MPa
E E=0.69-03+23.78 GPa En,o3-0=23.48 GPa
v Vin=0.18
M Mm,cg#o =-19.08 GPa

Since triaxial tests were only performed for up to 12 MPa of confinement, the curvature of the
enveloping failure was not very marked. Consequently, both studied failure criteria fitted well
with the results.

Note the very good regression analysis obtained at peak for the M-C failure criterion (Table
3.6 to Table 3.8) and also the good fit for the H-B criterion. As for residual data, M-C criterion
seems to fit results slightly better than H-B criterion. When trying to fit H-B criterion to residual
data some problems arose (0.’ < 0), so some tests were excluded from the analysis to obtain
reasonable data. In the final output, the very high values of the H-B parameter, m, and the friction
angle, ¢, can be observed and, in addition, the fact that these friction angles moderately diminish
from peak to residual, especially for the Amarelo Pais and Blanco Mera granites. Accordingly, it
is to be noted how the strength drop occurs mainly in the cohesive component.

The apparent elastic Young’s modulus for the different samples was obtained as the slope of
the g7 — & curve between 30% and 60% of peak strength. Contradicting some authors (Bukowska,
2005) but in line with other approaches (Brown et al., 1987), a tendency for £ to grow as o3
increases was observed for these low confinement values. This is illustrated in Fig. 3.6 in the line
fitted to the three rocks; note also that regression coefficients are not very high (R? around 0.7).
These trends, together with average values for unconfined tests (E., s3-0), are numerically
presented in Table 3.6 to Table 3.8 for the tested granites.



Apparent Young's modulus vs, Confining pressure
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Fig. 3.6. Apparent elastic Young’s modulus versus confining pressure for the three rocks studied.

Unconfined strength tests for Blanco Mera granite seems to result in lower values for Young’s
modulus than anticipated and also compared with those obtained for the other two granites. The
fact that Blanco Mera seems stiffer than the two other granites may be attributed to its lower mica
content.

Apparent Poisson’s ratios were calculated as the relationship between the slopes for the radial
and axial strains between 20% and 40% of peak strength. The values obtained (Table 3.6 to Table
3.8) are in line with those reported in the literature for granites (Gercek, 2007), and they also
remain constant within the natural variability of these parameters, as can be observed in Fig. 3.7.
It is important to select an adequate range of stresses to estimate this parameter, since, if selected
over the ‘onset-of-dilatancy’ point, abnormally high values may be obtained.

Apparent Poisson’s ratio vs. Confining pressure
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Fig. 3.7. Apparent Poisson’s ratio versus confining pressure for the three rocks studied.

The drop modulus M was computed as the mean negative slope of the curve o; — & after peak
strength and in the first 50% of softening. A general perspective on the results of our tests indicates
that this modulus tends not to remain constant all along the softening process. Therefore, the
estimates of M in the different triaxial tests are indicative, average values for this parameter
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(M, 5320) are shown in Table 3.6 to Table 3.8. Future studies will focus on a detailed analysis of
the softening process and correlation of the stress drop with a softening or plastic parameter.

Fig. 3.8 shows estimated values for the drop modulus graphed against the confinement. At
such low confining stress values and for such brittle materials, a slightly decreasing trend can be
observed as confining pressure grows, as reported in classic studies by Von Karman (1911). The
drop modulus results for the unconfined strength tests are excluded for mean estimates due to the
brittleness of the materials used, commented above; even if calculated rigorously, these results
would have to be used with care.

Drop modulus vs. Confining pressure
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Fig. 3.8. Drop modulus versus confining pressure for the three rocks studied.

Note that peak and residual strength criteria, elastic parameters and drop modulus, together
with the dilation angle values presented in next section provide a complete set of parameters to
simulate the (strain-softening and variable dilatancy) mechanical behavior of the tested rock
specimens. This model is much more realistic than those traditionally used in rock engineering
applications (elastic-perfectly-plastic); however, further studies are needed to propose models
better able to represent rock behavior, particularly for large strain situations.

Finally, the orientation of shear bands (Fig. 3.9) was tracked, measuring the angle known as £
as the slope of the shear band with a horizontal line, whenever possible and compared with
confining pressure. Results similar to those reported by other authors (Besuélles et al., 2000) were
obtained, with shear band inclinations becoming less sharp with confinement. This trend is
graphed in Fig. 3.10. Future research will focus on providing further insights on this issue
(Vardoulakis & Sulem, 1993).

Fig. 3.9. Shear banding in the three types of granitic rocks.
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Shear band inclination Vs. Confining pressure
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Fig. 3.10. Orientation of shear bands versus confining pressure.
3.5.2. Dilatancy

Due to the confining pressure equipment incorporated in the servo-controlled press, the
complete stress-strain curve in triaxial tests could be now obtained, as depicted in Fig. 3.11. These
curves are still relevant in rock mechanics and, in the last thirty years, although significant success
has been achieved in terms of methodologies for estimating reasonably good elastic parameters
and failure criteria in rocks, joints and rock masses, this has not been the case for post-failure
behavior, mainly due to the difficulties associated with defining a model that adequately reflects
observed complete stress-strain curves. In routine engineering applications, therefore, dilatancy
seems to receive relatively little attention; this is hardly surprising since, apart from the inherent
difficulties in estimating dilatancy, many problems in rock mechanics are solved by simply
avoiding failure.
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Fig. 3.11. Complete stress-strain curve obtained in a triaxial test.



Dilatancy can be defined as a change in volume resulting from the shear distortion of an
element in a material. The dilation angle, ¢, is a suitable parameter for describing the behavior of
a dilatant material, since —as will be shown below— it represents the ratio of plastic volume
change to plastic shear strain.

With the increasingly successful use of numerical models in rock engineering in recent
decades, excavation design has often come to rely greatly on numerical studies. Due to the
difficulties in estimating dilatancy, in order to create a complete stress-strain curve model and
extrapolate data to rock masses, excavation designs tend to use simple behavior models, such as
elastic-perfectly-plastic models. More complex behavior models, like strain-softening models, are
seldom used and the role of dilatancy is often simply ignored.

In an attempt to fill this gap and explore the topic in more depth, some authors have proposed
models to fit existing data to deformational behavior. Alejano & Alonso (2005), in a study based
on results for tests on sedimentary rocks, described a novel model for estimating the dilation angle
in rocks and rock masses that showed dependencies on confining stress, on the plasticity suffered
by the material and, indirectly, on the scale. Zhao & Cai (2010a) proposed an evolved mobilized
dilation angle model; based on the response combined with grain size description and uniaxial
compressive strength for rocks, the approach was generalized for different rock types, including
hard ones, and later extended to rock masses (Zhao & Cai, 2010b).

One of the main aims of this doctoral work was to study dilatancy and to contribute to the
post-failure database, given that information on granitic rocks is lacking (Zhao & Cai, 2010a).

3.5.2.1. Computing the dilation angle

For granular soils, rocks and concrete, Vermeer & De Borst (1984) pointed to a dilation angle
that is significantly smaller than the friction angle and proposed the following equation for
assessing the dilation angle in its more general form:

. Er
¥ =arcsin ————— 3.4
=2&l + &7 34

The advantage of this formulation is that not only does it commence with the plastic volumetric
strain rate, and is also valid for the interpretation of triaxial tests, but it can also be applied to the
analysis of plane strain conditions and even in true triaxial situations. It should be pointed out that
the fraction denominator represents, in absolute terms, the plastic parameter defined from internal
variables in plane strain conditions as follows:

y'=g"-& (3.5)

For a standard triaxial test in which confining stress is applied peripherally to a sample, it is
clear that, under homogeneous deformation conditions, & = &; therefore, as commented
previously & = &+2¢&;. Thus, the dilation angle in standard triaxial tests can also be computed
from:

(3.6)

In the present study, the Vermeer & De Borst (1984) equation (Eq. (3.4)) was used, since the
values for the axial and volumetric strains were related directly to the measures performed during
the triaxial tests.

Consequently, to calculate the dilation angle it was necessary to obtain the incremental plastic
strains. This was achieved selecting some arbitrary segments in a complete stress—strain curve in
order to decompose the total strains into their elastic and plastic parts:

R )
&=¢ +¢ 3-7)
This decomposition can be depicted graphically. In the case of axial strain it was only

necessary to plot straight lines —with slope equal to the apparent Young’s modulus— from
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arbitrary normal stress-axial strain curve values and then to read the plastic axial strain in the
abscissa axis, as shown in Fig. 3.12.

To obtain a reasonably accurate value for volumetric strain, it was necessary to implement
some unloading—reloading cycles in order to obtain the irrecoverable volumetric strain locus by
linking the points of minimum strain in each cycle, as shown in Fig. 3.12 (Crouch, 1970). Once
the irrecoverable strain locus is obtained, the procedure is the same as for axial strain: a straight
line is plotted, parallel to the previously explained cycles (from the same arbitrary strain values
used for axial strain), from the strain volumetric strain curve up to the irrecoverable volumetric
strain locus; the volumetric plastic strain is that value in the ordinates axis, as shown in Fig. 3.12.

Repeating this process several times for a number of arbitrary strain values and for each
compression test (both confined and unconfined whenever possible), a point cloud was obtained
for the dilation angle as a function of the plastic parameter and confining pressure. Nevertheless,
analysis of dilation angles from a standard triaxial compression test is difficult due to the inelastic
behavior of the stress-strain curve, variability in the elastic parameters and the occurrence of non-
homogeneous deformation modes (bifurcation and subsequent axial splitting and shear banding).
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Fig. 3.12. Graphic estimate of axial and volumetric plastic strains.

It is also important to be aware of some of the issues raised in investigating complete stress-
strain curves in rock masses (Hudson et al., 1971b; Jaeger et al., 2007; Price & Farmer, 1979).
Between the onset of stable fracture propagation and unstable fracture propagation, & is a
negative value whereas ¢/’ is null, in other words, there is no inelastic axial strain for initial small
values of the plastic parameters. This means that the dilation angle tends to minus infinity in this
stage. Other inelastic and non-strictly plastic effects (such as crack closure in the early stages of
stress application —resulting in the initial concave form of the stress-strain curve— and rock
damage over long-term peak stress) add to the difficulty in obtaining more or less accurate dilation
angle values (Alejano & Alonso, 2005).

The concept of dilatancy as defined above only makes sense in the post-failure zone, even if]
at the peak strength point, the plastic parameter is in the order of some milistrains and inelastic
volumetric strain attains values in the range 0.04% to over 0.1% (Scholz, 1968).
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3.5.2.2. Dilatancy results

Using the above mentioned approach to estimation, point clouds —for the dilatancy value
against the plastic parameter y”’— were produced for each type of granite at different confinement
levels, plotted as shown in Fig. 3.13. The figure reveals dilation angle dependencies as pointed
out by Alejano & Alonso (2005), that is, the dilation angle depends, first, on confining pressure
(i.e., as confining pressure grows, the dilation angle diminishes) and, second, on plastic shear
strain (i.e., as plastic shear strain develops, the dilation angle decays). Note the wide dispersion
of the unconfined test results, reflecting the type of measurement of volumetric strain (derived
from radial strain in one diameter). Since around twelve unconfined tests were performed for each
granite rock, even if there is wide dispersion, the average values can be considered to be
reasonably representative of actual behavior.

The laboratory results were compared with the models proposed by Alejano & Alonso (2005)
and by Zhao & Cai (2010a). The Alejano & Alonso (2005) model is divided into two parts, one
referring to the peak dilation angle and the second part related to dilation angle decay with
plasticity. This model did not fit the laboratory data in terms of peak friction angle, since the peak
dilatancy values recovered were well below the expected ones. However, the process of dilation
decay was reasonably well represented. The differences may well be due to the different nature
of the rocks analyzed here (plutonic rocks) and those used for the Alejano & Alonso (2005) model
(sedimentary rocks).

The model proposed by Zhao & Cai (2010a) required laboratory data to be fitted to the
equation below relating dilation angle with plastic shear strain (y”, expressed in percentage of
deformation):

ab(e’byp —e )
c-b

As indicated in Zhao & Cai (2010a), parameters @, b and ¢ control the shape of the curve.
Although each affects the entire curve, they mainly control just one aspect of shape. Thus, a
mainly controls the peak dilation angle, b mainly controls peak dilation angle location and ¢
mainly controls rate of decay.

(3.8)

[//:

Table 3.9 presents the best fit parameters for dilation angle-plastic parameter curves for the
three granitic rocks studied. Fig. 3.13 shows the fitted points cloud for each rock and each
confining pressure.

The parameters a, b and ¢ also show confining pressure dependency, as depicted in Fig. 3.14.
As confining pressure increases, ¢ and b decrease whereas ¢ increases. These behaviors were
evaluated against the expressions below proposed by Zhao & Cai (2010a), resulting in a very
good fit to results for the previously obtained coefficients.

%
— P}
a—a1+aze

= 3.9
bh=b +b,e"” G9)

c=¢+c,0°
3

Using Eq. (3.9), three coefficients are necessary to fit each of the confining dependent
parameters in Eq. (3.8). These coefficients are presented in Table 3.10, together with coefficients
as obtained by Zhao & Cai (2010a) for a quartzite and a strong sandstone for comparison
purposes, indicating values to be within a reasonable range. Using these coefficients it is possible
to compare variations in fitted parameters at different confining stresses and their best fits.
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Dilation angle vs Plastic shear strain. Lab data and fits.
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Fig. 3.13. Dilation angle vs. plastic shear strain for various confining levels and laboratory results and
fits for each granite type.
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Table 3.9. Fit coefficients for dilation angle-plastic parameter curves for the three granitic rocks studied.

Rock (Mof’a) a b c R?

0 5715 2500 0014 0.999
£ 2 4703 1294 0176 0983
S 4 4200 867 0.170 0987
E 6 3490 772 0233 0.99%
£ 10 351 975 0375 0971

12 3095 897 0654 0.898

0 5795 5000 0049 0.997
S 2 4483 3597 0018 0990
S 4 3864 2885 0142 0.987
S 6 3206 2422 0213 0974
210 2466 2246 0244 0978

12 2454 2099 0250 0.992

0 5748 6001 0058 0.99
S 2 3439 3068 0120 0988
S 4 2872 1682 0131 0991
S 6 1770 1343 0.147 0992

10 947 11.15 0.156 0.994

Table 3.10. Plastic shear strain parameters and confining pressure dependent dilation angle model as
proposed by Zhao & Cai (2010a), for the three studied granitic rocks (this study) and two other rocks
(Zhao & Cai, 2010a).

*

aj as as by b> b; Ci C2 c3
63.17 11.92 2.80 5.83 36.25 6.77 0.14 1.14 1.23
29.01 28.05 4.76 8.26 17.49 1.5 0.014 0.0749 0.711
21.13 36.71 4.92 20.63 29.44 2.97 0.047 0.049 0.589
3.79 53.65 4.46 10.38 49.69 2.19 0.058 0.050 0.295
14.63 34.90 3.40 4.06 15.56 5.54 0.08 0.40 0.58

* 1. Quartzite (Zhao & Cai, 2010a), 2. Amarelo pais, 3. Blanco Mera, 4. Vilachan, and 5. Strong
sandstone (Zhao & Cai, 2010a)

DN AW N ==

At this point it is possible to show (Fig. 3.15) the models obtained for the three granitic rocks
studied here and the rocks studied by Zhao & Cai (2010a) for the case of 1 MPa confinement.
The graph shows how the granites are located between a harder and stiffer rock (quartzite,
labelled 1) and a softer rock (sandstone, labelled 2) as was anticipated.
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Mudstone (fine-grained soft rock), 5. Seaterth (fine-grained soft rock),; 6. Weak sandstone (fine- to

medium-grained soft rock); 7. Coal (fine- to medium-grained soft rock).
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3.6. Conclusions of this chapter

Within the framework of a study of the post-failure behavior of rocks and rock masses, an
experimental programme based on a press with fully servo-controlled loading was set up in order
to test and study post-failure stress-strain behavior in granite samples. A total of around 90
unconfined and confined compression strength tests with unloading-reloading cycles and
computation of volumetric strain in confined tests were performed. This ensured for every cycle
that the strength attained represents the point of an evolving strength criterion; it also allowed to
locate what is known as the irrecoverable strain locus, which would enable to obtain reliable
values for the dilation angle.

Peak and residual strength, apparent Young’s modulus, apparent Poisson’s ratio, estimated
drop modulus and shear band inclination were estimated for each test and dilation angle behavior
was computed all throughout the deformation process.

The dilation angle was computed from data in each of the compression tests when this was
possible. As previously observed, this angle was shown to be dependent on both confining stress
and plastic shear strain. Test results were compared with previously proposed models and the
obtained data fitted reasonably well with those of the Zhao & Cai (2010a) model. Accordingly,
best fit parameters for the data were calculated, obtaining adjustment curves very similar to those
reported by Zhao & Cai (2010a) for analogous rocks, since the tested granite dilation angle results
were located between those for a harder rock (quartzite) and a softer rock (strong sandstone). In
conclusion, this study has shown that even if dilation in hard igneous rock (such as granite)
follows similar confining stress and plastic strain dependent dilation trends as observed so far on
studies in sedimentary and metamorphic rocks, previous approaches (Alejano & Alonso, 2005)
are not accurate enough to properly model observed behavior. Therefore, this study contributes
to the experimental rock mechanics database in terms of completing it with information on the
relationships between dilation angle model parameters and different rock types —in this case
granites—, to date unreported in the literature.

A nine-parameter complex dilation model as presented in the literature (Zhao & Cai, 2010a)
has been demonstrated to be a good approach for the presented data. A one-parameter dilation
model (Alejano & Alonso, 2005) did not fit well with the obtained results. Looking to the future,
it could be interesting to investigate new dilation models that are neither as complex as Zhao &
Cai’s nor as inaccurate as the former approach —reasonably accurate for sedimentary rock but
not for igneous materials.

Some drawbacks of the testing set-up became apparent that need to be overcome in the future
so as to continue improving its testing capacity. Improvements will include the option for
performing unconfined tests with specimens inside a Hoek’s cell to obtain more homogeneous
volumetric strain results and controlling press stiffness to better reflect post-failure behavior
trends in very low confinement tests.

Future work will include a more detailed study of the post-failure part of the curve, in order to
assess the evolution of the principal stresses in relation to a suitable plastic parameter, and
implementation of the resulting approach in numerical models. It is also planned to extend the
observations to rock mass behavior, following the lines previously developed by the author’s
research group (Alejano & Alonso, 2005; Alejano et al., 2009b; Alejano et al., 2010; Alejano et
al., 2012a), and also to larger parts of the Earth’s crust.
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4. Dilation in other rocks based on lab strength tests

4.1. Introduction

In the field of geomechanics, developing an improved understanding of the behavior of rocks
like those studied in this chapter (three carbonate rocks: two limestones and a marble; an
amphibolite; and a gneiss) is of interest for a number of reasons, e.g. carbonate rocks form
economic petroleum reservoirs in many parts of the world; all of them are used extensively as
ornamental and aggregate building materials; and they also are of interest for infrastructure
projects. Some examples of projects involving excavation in these kind of rocks include the
Lotschberg and Gotthard base tunnels in Europe and the deep geological repository (DGR) for
nuclear waste currently going through the licensing process in Canada (Loew et al., 2000;
NWMO, 2015).

By understanding the reaction of different rock types to changes in their stress states, it is
possible to predict and even control the behavior of rocks for engineering projects (i.e. through
hydraulic fracturing in the petroleum industry or through the use of support in excavations). A
classic approach to study rock behavior is to investigate the stress-strain relations of a cylindrical
sample tested under compressive conditions. Based largely on these types of tests, many authors
have contributed significantly to a general understanding of the strength and elastic deformability
of many different rock types (Wawersik & Fairhurst, 1970; Crouch, 1970; Price & Farmer, 1979).
Following the attainment of peak strength, however, most tests do not continue to significantly
larger strains. Because of the relative scarcity of data in the post-peak region as well as the
increased behavior complexities and system dependencies at large strains, our understanding of
this component of rock behavior remains relatively poor (Diederichs, 1999).

Advances in testing techniques, starting in the 1960s and 1970s have allowed a significant
increase in the general capabilities of the rock mechanics community to perform post-peak
compression tests (Rummel & Fairhurst, 1970; Wawersik & Brace, 1971; Hudson et al, 1971a).
Since this time, several authors have published work focused specifically on post-peak testing
results (Elliot & Brown, 1985; Cipullo et al, 1985; Medhurst, 1996; Arzta & Alejano, 2013).

The goal of this study is to investigate the differences in the elastic, strength, and post-peak
properties between the tested rocks. It is the hope of the author that continuing to improve the
existing database of post-peak tests will encourage the development of increasingly accurate and
manageable models for complex rock behavior.

4.2. Rocks investigated

The carbonate rocks selected for this study (the two limestones and the marble) were selected
both because of their relative uniformity, and because of the differences in their petrologic
properties. The other two rocks (the amphibolite and the gneiss, metamorphic rocks like the
marble) were precisely selected because of their inhomogeneity. Close-up photos of the
carbonates rocks showing the differences in their grain structures and thin plates sections pictures
of the other two rocks can be seen in Fig. 4.1.

4.2.1. Indiana limestone

Indiana limestone is a Mississippian aged carbonate rock, and can be classified as a grainstone,
based on Dunham’s classification (Hill, 2013; Dunham, 1962). Because of its extremely uniform

This chapter contains some of the results published in the following citations:

Pérez-Rey, 1., Arzua, J., Barbiero, J., Alejano, L.R. & Walton G. 4 lab-testing based geomechanical characterization
of metamorphic rocks focusing on post-failure behavior. EUROCK2014 - Rock Engineering and Rock Mechanics:
Structures in and on Rock Masses — Alejano, Perucho, Olalla & Jiménez (Eds). 27-29, May. Vigo, Spain. CRC Press,
Taylor and Francis Group, London.

Walton, G., Arzua, J., Alejano, L.R., Diederichs, M.S. 2015. 4 Laboratory testing-based study on the strength,
deformability and dilatancy of carbonate rocks at low confinement. Rock Mechanics and Rock Engineering. 48:941-
958.



grain size and structure, it has been widely used as a building stone starting in 1827. Indiana
limestone is quite pure, consisting of at least 97% CaCOj3; with small amounts (1.2%) of MgCOs
(Hill, 2013). Grain sizes range from approximately 0.3 mm to 0.5 mm. Indiana limestone is by
far the most porous of the rocks studied in this work, with porosities generally in the range from
12% to 20% (Vajdova et al, 2004). The samples tested were determined to have a mean density
of 2.31 g/cm® with a standard deviation of 0.01 g/cm’.
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Fig. 4.1. Grain structures of Indiana limestone, Carrara marble and Toral de Los Vados limestone. Thin
plate section with crossed nicols (upper) and with visible light (lower) of the Touro amphibolite and Noia
orthogneiss. Remark the foliation in the amphibolite (amphibole colored crystals) and the gneiss (black
biotite).

Because of its wide usage and its uniform and repeatable behavior, Indiana limestone has been
widely studied in the literature. Some previous studies have focused on brittle failure mechanisms
in Indiana limestone (Robinson, 1959; Wawersik & Fairhurst, 1970; Zheng et al, 1989), tensile
fracturing (Hoagland et al, 1973; Peck et al, 1985), poroelastic properties (Hart & Wang, 1995),
fracture toughness (Schmidt & Huddle, 1977), and compaction (Vajdova et al, 2004; Ji et al,
2012).

4.2.2. Carrara marble

Carrara marble is a metamorphic rock of Triassic age formed from the metamorphism of an
ancient carbonate shelf. There are several varieties of Carrara marble depending on the purity of
the marble and the prevalence of microstructures in the rock. The white Carrara marble used in
this study is 100% calcite (Howarth & Rowlands, 1987). Grain sizes of Carrara marble of 0.1 mm
(Edmond & Paterson, 1972), 0.23 mm (Fredrich et al, 1990), and 0.3 mm (Howarth & Rowlands,
1987) have been reported in the literature. Most grains in the samples studied are closest to
approximately 0.1 mm in size. The porosity of Carrara marble is very low, in the range of 0.7%
(Fredrich et al, 1990) to 1.1% (Edmond & Paterson, 1972). The samples tested were determined
to have a mean density of 2.70 g/cm® with a standard deviation of 0.01 g/cm’.

Previous studies on the Carrara marble have focused on the brittle-ductile transition of
sedimentary and/or carbonate rocks at moderate to high confining pressures and/or temperatures
(Turner et al, 1954; Griggs et al, 1960; Mogi, 1966; Edmond & Paterson, 1972; Fredrich et al,
1989; Ord, 1991). Other studies have used Carrara marble to study the influence of grain size on
rock yield (Olsson, 1974; Howarth & Rowlands, 1987; Fredrich et al, 1990).
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4.2.3. Toral de L.os Vados limestone

The Toral de Los Vados limestone corresponds to Cambrian strata found in the western area
of the province of Ledon (NW of Spain). It is found in a sedimentary series of mid-Cambrian age
that has locally suffered low degree metamorphism, so some of the original mudstones and
limestones have become slates and marbles. In situ, this limestone presents tabular bedding, also
showing fine laminations and local dolomitic levels. Various high stress periods over the
geological history of the area have fissured the rock. During the alpine orogeny some re-
crystallization has occurred, which is apparent in the form of re-crystallized calcite veins. This
re-crystallization has overprinted most primary sedimentary structures that existed within the
rock.

As a consequence of this process, the rock does not present significant porosity. Observed
grain sizes range from non-visible to 0.1 mm. The texture is granoblastic to aphanitic. A
granoblastic texture describes equigranular crystals which adopt a polygonal morphology, often
seen in the products of thermal metamorphism. The term aphanitic describes fine-grained rocks
in which all crystals, other than phenocrysts, cannot be seen with the naked eye. The rock is quite
heterogeneous showing locally rusty patterns. Chemical analysis showed not only calcite
(principal mineral), but also moderate levels of dolomite (15-25 %) and also small quantities of
quartz and silicates (5-10 %).

4.2.4. Touro amphibolite

The garnet amphibolite tested is a compact brownish to greenish grey, somewhat banded,
medium size grained (0.1 to 0.2 mm). It is a metamorphic rock formed through recrystallization
under conditions of high viscosity and directed pressure. It is composed mainly of amphibole
minerals (actinolite) and plagioclase feldspar, it also contains relevant quantities of quartz, garnets
and pyroxenes.

The metamorphism has somewhat flattened and elongated the mineral grains to produce a
banded texture (in between schistose and coarse grained, see Fig. 4.1). The samples were
recovered in an old copper mine in Touro, a little town located some kilometers west of Santiago
de Compostela in NW of Spain.

4.2.5. Noia orthogneiss

This rock is a very compact high grade regional metamorphic rock derived from granite and
composed by quartz, feldspar (alkaline and plagioclase), mica (mainly biotite) and small
quantities of hornblende. It is a medium to coarse foliated rock, characterized by discontinuous
alternating light and dark layers, the former usually having a coarsely granular texture (0.3 to
0.5 mm) while the latter may be more foliated (see Fig. 4.1). The material was recovered in an
aggregate quarry two kilometers south of Noia in La Corufia province, in NW of Spain.

4.3. Methods

4.3.1. Test setup

For each rock type, compression tests were carried out under uniaxial and triaxial conditions
with confining pressures of 1 MPa, 2 MPa, 4 MPa, 6 MPa, 8 MPa, 10 MPa, and 12 MPa when
possible. At this point, it has to be noted that the testing in gneiss was limited to a maximum
confining pressure of 6 MPa due to its high compressive strength (UCS > 250 MPa) and in order
to avoid further problems with the testing equipment. These confining pressures were selected
based on their relevance for near excavation conditions, and also because of the upper limit
pressure of 20 MPa of the hydraulic system. The numbers of samples tested at each confining
pressure are shown in Table 4.1. The results of all the tests are shown in Appendix B

(9]
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Table 4.1: Number of tests performed on each rock and at each confining pressures.

Confining pressure (MPa) 0 1 2 4 6 8 10 12

Indiana limestone 10 3 3 3 3 3 3 3
Carrara marble 6 3 3 3 3 2 2 2
Toral de Los Vados limestone 5 0 3 3 3 2 2 2
Touro amphibolite 5 0 3 3 3 0 3 3
Noia gneiss 1 0 4 5 4 > 1* 1%

* Triaxial testing at these confining pressures overpassed the limiting confinement of
20 MPa after failure, so post-failure data was not used.

Axial loading was applied using a standard press setup. To obtain reliable post-peak results,
unloading-reloading cycles were again performed for each test after the attainment of peak
strength as required. These cycles helped avoid sudden strength loss, which can lead to unreliable
(underestimated) weakening rates based on the stiffness contrast between the press and the sample
and the strain velocity of the press and also allowed to identify recoverable (or elastic) and
irrecoverable components of the strains.

Axial and radial strain in unconfined tests and axial and volumetric strains in triaxial tests were
measured as indicated in the previous chapter.

4.3.2. Data analysis

As explained earlier. In the case of the unconfined tests, the calculation of volumetric strains
was performed according to the relation:

g, =& +2¢ (4.1)

And in the case of the triaxial tests, the total volumetric strain was calculated according the
following equation (after Farmer, 1983):

g, =%(fAVf ~lzr?) (4.2)

With all of the relevant stresses and strains available, apparent Young’s modulus values were
calculated as the slope of the linear segment of the axial stress-axial strain curve for each test,
roughly between 30% and 60% of the peak strength. Poisson’s ratio values were calculated over
the portion of the axial stress-radial strain which is linear, between approximately 20% and 40%
of the peak strength.

For each unloading-reloading cycle performed on a given test, multiple pieces of information
were recorded. Of particular interest were the irrecoverable axial and volumetric strains in the
unloaded state; if such strains are considered to be purely plastic in nature, then the differences in
strains between consecutive unloading states can be used to calculate the instantaneous dilation
angle, ¢ (Vermeer & De Borst, 1984):

Ag

A4

—Ag, +2A¢,

When using a plasticity model to describe rock, it is important that an appropriate definition
of yield is adopted to properly constrain the onset of plastic behavior. For this study, the crack
damage stress (CD) has been adopted as the yield point, as per the definition of Diederichs &
Martin (2010). This yield point corresponding to the onset of unstable cracking in a test specimen
is defined as the start of non-linearity in the axial stress-axial strain curve (Diederichs, 2003),
which coincides with the volumetric strain reversal point under unconfined conditions (Martin,
1997). For each sample, CD was manually picked based on the axial stress-axial strain curve, a
smoothed point to point tangent modulus plot, and the volumetric strain-axial strain curve (see
Fig. 4.2).

siny = (4.3)



Another consideration when working with plasticity models for rock is the appropriate
quantification of accumulated damage following yield. This is typically achieved by using a
measure of plastic strain. One common approach is to select the plastic parameter to be function
of internal variables, in particular the plastic shear strain:

n=y’ =& -& (44)

As an alternative to this approach, an incremental plastic parameter can be used which is based
on plastic strain increments. One definition for such a parameter is:

77:\/5(31”31” +5§5§+5§’5§’) (4.5)
(Vermeer & de Borst, 1984).
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Fig. 4.2. Example of data used to select the crack damage stress (CD) for each test specimen, axial stress

versus axial strain (top), smoothed point to point tangent modulus (middle) and volumetric strain versus
axial strain (bottom) plots are shown.

In the commonly used finite-difference codes FLAC and FLAC3D, the incremental plastic
parameter is defined as:

%
Ae” = {%(Agl’” ~Aer) + %(Agﬂ’f ) + %(Ag;’s ~Agl )2} 2 (4.6)
where:

1 ,
Agl" = E(Ag{" +Ael") (4.7)
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(Itasca, 2011).

When the dilation angle is a constant, it can be shown that the cumulative plastic parameter,
e”, is directly proportional to the plastic shear strain, y”. The constant of proportionality varies
between 1/2 and 1/73, depending on whether the dilation angle is closer to 0° or 90°, respectively
(after Alonso et al, 2003). In practice, when using numerical models with a non-constant
(mobilized) dilation angle model, Alejano & Alonso (2005) have found that dividing y* by 2 to
obtain ¢” introduces minimal errors into the plastic strain calculations. In this study, y” is used
as the plastic parameter representing accumulated damage and strain.

4.4, Interpretation of results

An interesting range of behaviors can be observed in the five rock types studied. Examples of
the stress-strain curves can be seen in Fig. 4.4, where the results from triaxial tests at 6 MPa of
confining stress are showed for the five rocks studied. In this figure also a graph (bottom right)
showing the axial stress-axial strain curve without the unloading-reloading cycles for the five
studied rocks is showed for comparative purposes. One must take into account that while vertical
axes have different scales, the horizontal axis is maintained the same in all the graphs in order to
compare the different deformability behavior of the different rocks.

It is relevant to remark that because of the brittleness of the Noia gneiss, and also the Touro
amphibolite and the Toral de Los Vados limestone up to certain extent, it was difficult to control
the failure of the samples and achieve a stability transition from peak to residual strength, this
suggests that the rate of strength loss observed could be a function of the press strain velocity and
not of the rock itself. So even if the strength data in this portion of the tests cannot be considered
reliable, the axial strain-radial strain relationships should still be representative. Typical failure
mechanisms of each rock type at low and high confinements are illustrated in Fig. 4.3.

0 MPa 12 MPa 1 MPa 12 MPa 0 MPa 12 MPa

Indiana limestone Carrara marble Touro amphibolite

Noia gneiss

0 MPa 12 MPa 0 MPa 12 MPa

Fig. 4.3. Typical failure mechanisms in Indiana limestone, Carrara marble, Touro amphibolite, Toral de
Los Vados limestone and Noia gneiss. The inset figure (bottom middle, courtesy of Gabriel Walton)
shows grain scale conjugate shearing occurring in the Carrara marble. The confining stresses that the
samples were tested at are shown at the top or the bottom of each picture.
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The Indiana limestone was observed to display brittle behavior at low confinements, but
transitioned to relatively ductile behavior over a small range of confining pressures. This is likely
associated with the relatively high porosity and low strength of the limestone. The brittle-ductile
transition typically occurs at lower confining stresses for rocks which display lower strengths,
and the critical confining stress is typically lower for carbonate rocks than for other rock types,
particularly those with a higher porosity (Mogi, 1966). At low confinements, the limestone failed
through axial cracking, or in shear, with the shear fracture appearing to have formed through the
coalescence of small, axially oriented cracks. At higher confinements, the failure occurs over a
wider shear zone.

Indiana limestone - Triaxial test, 0; = 6 MPa Carrara marble - Triaxial test, a; = 6 MPa
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Fig. 4.4. Examples of the stress-strain response of the five studied rocks during a triaxial tests with a
confining pressure of 6 MPa. A comparative (bottom right) between axial stress — axial strain curves of
the five rocks is also showed, cycles have been removed from the curves in this graph in order to clarify

the comparison, observe the similarity in Young’s moduli of the Carrara marble (grey), Toral de Los

Vados limestone (yellow) and Noia gneiss (light blue).

&; (mstr)

The Carrara marble, in contrast, is relatively ductile, even at unconfined conditions. In many
cases, the marble would display elastic-perfectly-plastic behavior for small intervals of strain
before experiencing a sudden, but relatively small drop in strength. The kind of behavior can be
observed in Fig. 4.4. This observation is consistent with other studies in the literature, which note
that Carrara Marble deforms in a stable, ductile manner (Fredrich et al, 1990) and that crystalline
calcite can initiate ductile deformation mechanisms at relatively low temperatures and pressures
(Turner et al, 1954; Griggs et al, 1960). At low confinements, the marble failed in shear,
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sometimes with axial cracks being present as well. At higher confinements, the deformation
occurred through localized grain-scale shearing in a wide shear band.

The Toral de Los Vados limestone presents a brittle failure at low confining stresses, showing
axial cracking with the cracks connected laterally by fractures along sub-horizontal planes of
weakness. At higher confinements (4 to 6 MPa) this rock showed a more ductile behavior,
presenting shear failure across structures.

The Touro amphibolite shows a similar behavior to that of Toral de Los Vados limestone,
presenting axial cracking at low confinement and a more ductile failure with shear planes for
medium to high confining pressures (6 to 8 MPa). It has to be noted that axial failure was also
connected by fractures along planes of weakness, as it occurred in the Toral de Los Vados
limestone.

The Noia gneiss is the strongest and most brittle of the five rocks studied. This rock maintained
its brittle behavior until the highest confining pressures allowed by our system were reached (10
to 12 MPa). The failure in these conditions led to an even higher confining pressure that locked
the system. It was not possible to collect post-failure data of this rock for confining pressures
higher than 6 MPa.

The relative ductility of the Carrara marble when compared to as the Indiana limestone can be
seen by plotting the drop modulus (calculated based on data in Fig. 4.4 as the slope of the curve
from peak to residual strength) versus confining pressure (see Fig. 4.5). Both curves display a
roughly logarithmic trend, with the Carrara marble samples having drop moduli significantly
lower in magnitude than the Indiana limestone samples. The drop moduli corresponding to Touro
amphibolite, Noia gneiss and Toral de Los Vados limestone curves are in the range of -35 GPa to
-45 GPa; although these numbers may not be representative of the rock, they can be thought of as
an upper bound on the drop modulus.

Confining pressure (MPa)
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Fig. 4.5. Average drop modulus values for Indiana limestone and Carrara marble.

4.4.1. Strength

For each sample, ultimate strength and residual strength were recorded. Two strength models
were fit to each of these strength envelopes using least squares regression. The linear Mohr-
Coulomb criterion and the curved generalized Hoek-Brown criterion (Hoek et al, 2002):

2c  l+sing
o, = + —0, (4.8)
cos¢g 1-sing
o
0, =0,+0, [m—3+s] (4.9)
O-ci
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where c is the cohesion, ¢@is the friction angle, o.; is the uniaxial compressive strength of the intact
rock, and m, s and a are material constants. The raw data and the resulting fits are plotted in Fig.
4.6, and the material constants obtained from the strength fits can be seen in Table 4.2. In general,
the strength results are consistent with those in the literature when available (Carrara marble peak
UCS = 94.3 MPa, Howarth & Rowlands, 1987; Indiana limestone peak UCS = 62.6 MPa, Cargill
& Shakoor, 1990; Indiana limestone peak m = 7.1, Ramamurthy, 2001).
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Fig. 4.6. Strength data and least-squares Mohr-Coulomb (M-C) and Hoek-Brown (H-B) fits for Carrara
marble, Indiana limestone, Toral de Los Vados limestone, Touro amphibolite and Noia gneiss. In the
lower right graph, Hoek-Brown failure criterion fits for all the rocks are shown together.
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In all cases, the Mohr-Coulomb criterion represents the observed strength data as well as the
Hoek-Brown criterion, over the range of confining stresses tested. Observing the residual strength
data (along with the corresponding fit parameters), it can be clearly seen that for these rocks, the
principal drop in strength occurs in the cohesive component and in some cases like the Indiana
limestone and Carrara marble, the friction angle increases. Both the decrease in cohesive
component of the strength and the increase in the frictional component of the strength fit well the
model known as Cohesion-Weakening-Friction-Strengthening (CWFS) but this aspect is out of
the scope of the present study.

Table 4.2. Strength fit data.

Oci ¢ ¢
(MPa) m s “ ©) (MPa)
Indiana limestone Peak 62.6 7.1 1 0.5 35.8 16.2
Residual  62.6* 6.5 0.010 0.67 48.4 1.2
Carrara marble Peak 94.3 5.5 1 0.5 33.2 25.6
Residual ~ 94.3* 4.4 0.004 0.66 46.2 1.3
Toral de Los Peak 116.8 21.8 1 0.5 53.2 19.8
Vados limestone ~ Residual  116.8* 4.2 0.021 0.59 46.2 3.1
Touro amphibolite Peak 113.5 13.47 1 0.5 52.6 17.7
Residual 113.5% 3.11 0.048 0.6 41.2 4.5
. . Peak 255.0 29.21 1 0.5 61.6 30.9
Noia gneiss )
Residual 255.0* 6.25 0.004 0.68 58.1 1.1

* These values correspond to the fixed o used for the generalized Hoek-Brown criterion fit in the
residual state.

4.4.1. Deformability

The Young’s Modulus and Poisson’s ratio values obtained from the linear portions of the axial
stress-axial strain and axial stress-radial strain curves were found to show limited variability. The
calculated Poisson’s ratio values are shown in Table 4.3.

Table 4.3. Poisson’s ratio information.

Mean Standard deviation
Indiana limestone 0.13 0.026
Carrara marble 0.15 0.020
Toral de Los Vados limestone 0.08 0.016
Touro amphibolite 0.14 0.038
Noia gneiss 0.09 0.022

The apparent Young’s modulus values were found to vary significantly with confinement. The
more homogeneous Indiana limestone and Carrara marble displayed a linear relationship, while
the Toral de Los Vados limestone, Touro amphibolite and Noia gneiss showed a nearly constant
Young’s modulus under triaxial conditions and a distinct Young’s modulus under uniaxial
conditions. Although it would be reasonable to model the Young’s modulus of these rocks using
two distinct values, a slightly more complex model can capture not only the distinction between
uniaxial and triaxial conditions, but also any further trend at higher confinements (see Fig. 4.7).
Such a behavior was observed in the highly heterogeneous Blanco Mera granite (Chapter 3), and
can be fitted using a logarithmic model:

E=2XIn(0y)+E, (4.12)

where A is a coefficient, and E; is the model’s Young’s modulus at g3 = 1 MPa. To address the
issue of the lack of definition of the natural logarithm at o3 = 0 MPa, the function can simply be
transitioned into a tangent linear section wherever the tangent ray of the log function intersects
the known uniaxial modulus.
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It is interesting to note that in both the case of this study and the granites studied in the previous
chapter, the linear model for Young’s Modulus values tends to apply to the slightly weaker rocks
with more homogeneous grain structures, whereas the logarithmic model applies to the stronger
rocks with more heterogeneous grain structures. With this in mind, in the case of the more
complex logarithmic model, the rapid increase in stiffness over the first few MPa of confinement
can be hypothesized by a transition from localized elastic deformation in softer parts of the sample
to more homogenous deformation.
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Fig. 4.7. Variation in Young’s Modulus as a function of confinement, with a linear model shown for the
Indiana limestone and Carrara marble (both on top); and a logarithmic model shown for the Toral de
Los Vados limestone, Touro amphibolite and Noia gneiss.
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The relevant model parameters for the proposed Young’s modulus models can be seen in Table
4.4.

Table 4.4. Young’s Modulus model information.

Young’s Modulus

at Linear = Logarithm Logarithm 2
. constant R
o3 =0 MPa fit slope  coefficient term (GPa)
(GPa)
Indiana limestone 24.6 0.18 - - 0.38
Carrara marble 45.3 0.55 - - 0.55
Toral de Los Vados 40.6 - 3.42 49.5 0.63
limestone
Touro amphibolite 21.5 - 0.76 28.4 0.49
Noia gneiss 45.2 - 0.74 53.4 0.48

4.4.2. Dilatancy

The dilation angle data obtained based on the unloading-reloading cycles were found to show
a trend similar to that of the model proposed by Zhao & Cai (2010a) for lab specimens dilatancy:

l//:

—_hyP P
ab(e by —e”)

c—b

(4.13)

One set of parameters were fit to all data obtained at each confining stress for each rock type
using least-squares regression. These parameters are shown in Table 4.5. A comparison of the
dilation angle data for low confining stress between various rock types is given in Fig. 4.8.

Table 4.5. Mobilized dilation angle fit parameters for the rocks tested.

o: (MPa) 0 1 2 4 6 8 10 12
4 - 345 154 372 229 157 110 90
25 b - 20212 10763 1412 3148 46542 3883 32230
T2 ¢ - 0636 0441 1577 0739 0678 0482 0770
= R - 070 017 088 050 042 023 027
a 4582 6336 5808 5267 47.10 4283 4174 4553
g 2 b 842 244 433 348 428 571 425 3.68
SE ¢ 0011 0715 0838 0651 0885 1ISI 0663 0926
R 0155 0851 0862 0883 0811 0936 0923 0912
L5 4 - ] 340 312 322 266 397 434
SEE b - . 10054 101.17 101.17 101.91 100.06 97.19
528 ¢ - - 0189 0281 0304 0268 0471 0.798
-5 R ; 070 072 042 052 088  0.86
s a - _ 4000 3959 3400 - 3000 3442
22 b - - 090 089  0.70 ; 0.62 049
cE ¢ - - 0312 0400 0590 - 1047 0.674
E R - 0273 0716 0189 - 0453 0351
" a - - 35 3019 2764 - i -
El b - - 5000 32.00 22.04 - ; ;
g c - - 0156 0170 0209 - ; ;
~ R’ - - 0.507  0.330 0.719 - - -
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The main advantage of the Zhao & Cai (2010a) model over others is its ability to fit observed
data at a wide variety of confining stresses and over a large range of strains. Unlike the Alejano
& Alonso (2005) model, that of Zhao & Cai (2010a) includes the interval between CD and peak
strength, where unloading data show an increase in the dilation angle from 0° to a maximum
value. The main disadvantage of this model is its complexity, with 3 parameters (a, b, ¢) required
to define the evolution of the dilation angle with respect to strain. Each of these parameters can
be further decomposed to account for their variability with respect to confinement, leading to a 9
parameter model (a,, az, as, b1, b2, b3, c1, 2, ¢3). These nine parameters that define the full dilation
angle model for each rock type have been calculated according to the method of Zhao & Cai
(2010a) and are presented in Table 4.6. Note that given the lack of constraints on the “lower
bound” dilation angle, given by a;, the least-squares value of this parameter was found to be zero
for the two limestones.

Table 4.6. Parameters defining full mobilized dilation angle model.

aj as as b, b> bs Ci C2 C3
Indiana limestone 0 396 87 265 4506 1.08 0551 0011 1.01
Carrara marble 419 289 34 44 39 006 0.008 0.504 0.29
Toral de Los Vados 0 366 296 972 2252 099 8ed 0.181 024
limestone
Touro amphibolite 228 219 102 led 11 151 led 0214 057
Noia gneiss 248 193 3.1 114 723 3.8 0.082 0054 048

In general, the complexity of this model is problematic, since there is often not enough data in
the first few milistrains of deformation to properly constrain the whole model. The number of
parameters combined with the complexity of each parameter’s influence on the model makes it
difficult to provide any physical meaning to the individual parameters.
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Fig. 4.8. Variations in the mobilized dilation angle for the five rocks studied (named 11, 12, 13, 14 and
15) and for other rocks types at a confining pressure of 1 MPa (after Arziia & Alejano, 2013, with data
from Zhao & Cai, 2010a).



4.5. Conclusions of this chapter

Uniaxial and triaxial compression tests were conducted with the goal of studying the
constitutive behavior of five different rocks within a plasticity framework. A total of 112
unconfined and confined strength tests were conducted, with unloading-reloading cycles both
used to ensure stability of the system during loading and also to help constrain the evolution of
irrecoverable strains. All these tests were carried out in the John P. Harrison Rock Mechanics’
Laboratory of the University of Vigo, but those corresponding to sedimentary rocks were
performed by Gabriel Walton in association with his Ph.D. thesis.

The Carrara marble was found to be the most ductile of the five rocks tested, with shear failure
modes being prominent even in uniaxial conditions. The Indiana limestone showed a brittle failure
under unconfined conditions, whereas failure at even modest confinements tended to be controlled
by more ductile shear. The Toral de Los Vados limestone and the Touro amphibolite showed a
similar behavior, they showed a brittle failure under unconfined conditions failing by axial
cracking and opening along previous weakness planes, and a more ductile failure when the
confining pressure reached a medium value. Finally the Noia gneiss was found to be extremely
brittle, needing a high confining pressure to begin to show some ductile failure trough shear
planes.

The restrictions imposed by the equipment led to limit the confinement of the gneiss’ triaxial
tests. It could only be reached a confining pressure of 6 MPa because, at higher confinements, the
combination of strength and brittleness of the gneiss caused a sudden increase in confining
pressure after failure. This sudden increase in pressure locked the system if more than 20 MPa
were reached.

Peak and residual strength envelopes were determined for each of the rocks. Finding that the
residual friction angle of the Indiana limestone and the Carrara marble are higher than the friction
angle at peak strength, while the Noia gneiss’ friction angle only shows a slight decrease and the
more foliated Touro amphibolite and the laminated Toral de Los Vados limestone present a
significant reduction in the residual friction angle respect to the peak. The former rocks could fit
a Cohesion-Weakening-Friction-Strengthening (CWFS) model, although this aspect is out of the
scope of the present study, it could be an interesting matter for further research.

An investigation of the elastic parameters of the rocks found that all five examined types have
statistically different Young’s moduli under unconfined and confined conditions. The sample
stiffness values were found to increase as a linear function of confinement for the homogenous
Indiana limestone and Carrara marble, but the Toral de Los Vados limestone, Touro amphibolite
and Noia gneiss displayed a significant (non-linear) increase in stiffness when changing from
uniaxial to triaxial loading conditions.

Dilation angle values were calculated as a function of plastic strain, where sufficient post-yield
data existed. These data were found to fit reasonably well with the model of Zhao & Cai (2010a)
in most cases, although a lack of data constraints at small plastic strains led to not so reliable
results in some cases.

These results extend the database of dilatancy on different types of rocks: coal, sandstone,
siltstone as shown in Alejano & Alonso (2005); quartzite and weak and strong sandstones as
recovered by Zhao & Cai (2010a); granites as presented in the previous chapter and now some
carbonate and regional metamorphic rocks. This is a necessary background to further improve
existing dilation models
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5. Strength and dilation of jointed granite specimens

in servo-controlled triaxial tests

5.1. Introduction

Hoek & Brown (1980a) stated, 35 years ago, that the strength and behavior of a rock mass
were not only controlled by the intact rock itself but also by rock structure —which could be
quantified starting from Bieniawski’s Rock Mass Rating (RMR) (Bieniawski, 1976)— and scale.
In the current experimental study, rocks that included an artificial rock structure were tested,
including three joints belonging to two different sets, with results indicating an important and
consistent decrease in strength. This decrease is clear experimental evidence of the role of
structure in rock strength. Moreover, it opens the door for further testing to better understand the
role of structure in rock mass behavior —including not only strength (typically included in most
rock mechanics developments following updated techniques (Hoek & Brown, 1997; Marinos &
Hoek, 2000; Hoek et al., 2002; Cai et al., 2004, 2007) but also post-failure behavior of rock masses
and, particularly, post-failure volumetric behavior.

Dilation (also called dilatancy) controls the change in rock volume when this undergoes
different stress states and strain levels. It has long been recognized as an important and pervasive
property in rock and rock mass behavior (Hudson et al., 1971b; Jaeger et al. 2007) and this is
particularly true for post-failure or post-peak behavior (Medhurst & Brown, 1998). Early
researchers in rock mechanics found that this parameter was not easy to estimate, partly due to
the difficulties in controlling the post-failure phase of strength tests. To properly understand how
a particular rock dilates, multiple volumetric strain-controlled compression tests at varying
confining stress levels are needed and these tests should preferably include a number of
unloading-reloading cycles in order to identify the elastic and plastic components of the strains.

Detournay (1986) suggested that dilation largely depends on the plastic or irreversible
deformation suffered by the material. Alejano & Alonso (2005) proposed a confinement stress
and plasticity dependent dilatancy behavior model which fits quite well to triaxial test results on
samples of sedimentary rocks. This model also has the important advantage that it depends on a
single parameter and also that it can be extended to rock masses without difficulty, even if results
cannot be easily compared to actual data.

However, Zhao & Cai (2010a) and Arzua & Alejano (2013) clearly showed that this model
(Alejano & Alonso, 2005) is not suitable for tests on igneous and metamorphic rocks. Zhao & Cai
(2010a) fitted a model to generic dilatancy outputs which adapted to a broad database of results
quite well, covering sedimentary, metamorphic and igneous rocks, but requiring nine parameters
of minor physical significance. This model was used by Arzta & Alejano (2013) to fit dilatancy
results in a good number of triaxial tests on three kinds of intact granite specimens.

Understanding the applicability to rock masses of dilatancy models like that of Zhao & Cai
(2010a) is a necessary next step in this field of research. Alejano & Alonso (2005) suggested that
peak dilation for the unconfined case can be identified using the peak friction angle and that this
also applies for rock masses. Zhao & Cai (2010b) also extended their model to rock masses based
on the same assumption, presenting an application to deformation modelling that shows that their
model is an improvement over conventional (constant dilatancy) approaches. Zhao et al. (2010)
further applied this model to the case of typically brittle rock masses showing Cohesion-
Weakening-Friction-Strengthening yield processes. Other authors have shown that relevant
conclusions can be derived from non-standard dilation models used for underground excavation
modelling (Alejano et al., 2012b; Walton & Diederichs, 2012).

Within this general framework, the author considered that, in order to foster research into rock
mass behavior, it could be useful to perform complete stress-strain tests on rock specimens with
a number of equally oriented and equally spaced artificial discontinuities (joints). The main aim
of this research, therefore, was to assess the differences between the behavior of the rock mass

A version of this chapter has been published with the following citation: Arzaa, J., Alejano, L.R., Walton, G. 2014.
Strength and dilation of jointed granite specimens in servo-controlled triaxial tests. International Journal of Rock
Mechanics and Mining Sciences. 69:93-104.



analogues and the corresponding intact specimens. Previous trials to study the behavior of fissured
rock specimens (Kulatilake et al., 1997, 2001) used materials built from plaster of Paris and silica
sand and, moreover, only investigated unconfined behavior.

In the following sections, first, the equipment and techniques required to prepare the samples
and perform the triaxial tests in such a way that the complete stress-strain curves could be obtained
up to a sufficiently large level of strain are explained. Common geomechanical parameters were
obtained for each test —including apparent elastic modulus and Poisson’s ratio, drop modulus
and peak and residual strength envelopes— and are compared to those derived from intact rock
specimens. Finally, following previously explained techniques (Chapters 3 and 4), the evolution
of the dilation angle was determined over the course of each test. Once it became clear that the
Alejano & Alonso (2005) model did not adequately fit the results, the Zhao & Cai (2010a) dilation
model was applied to obtain the corresponding dilation parameters; again, a comparison was made
to the results obtained for intact specimens.

5.2. Test setup

5.2.1. Testing equipment

As described in the previous chapters and published elsewhere (Arztia & Alejano, 2013), the
John P. Harrison Rock Mechanics’ Laboratory has a fully servo-controlled press capable of
performing compression tests with unloading-reloading cycles and of measuring the amount of
displaced hydraulic fluid needed to maintain confining pressure at its nominal value. For the sake
of brevity and bearing in mind that the used equipment has been explained in detail in a previous
chapter, the description below is greatly abridged.

Axial strain is measured by means of a pair of linear variable differential transformers attached
to the lower platen of the press using industrial magnets. Volumetric strain is determined based
on the volume of hydraulic fluid displaced during triaxial compression tests. Using axial and
volumetric strain parameters it is possible to accurately compute radial strain. The complete
stress-strain curves obtained, of paramount importance in rock mechanics (Hudson et al., 1971b),
are the basis for the characterization of rock behavior.

5.2.2. Rock testing

For this study, a granitic rock locally known as Blanco Mera was tested. This rock has been
characterized in terms of its geological and chemical nature using an optical microscope to study
thin sections of the rock (Chapter 3). The results of tests on intact specimens of this rock,
presented in Chapter 3 were added to the results obtained in newly performed tests and compared
in this research to the results obtained for the jointed specimens.

5.2.3. Jointed specimen preparation

Jointed specimens were prepared in order to simulate rock mass behavior at the laboratory
scale. All cores tested contained the same three joints belonging to two joint sets —one sub-
vertical joint and two sub-horizontal joints. This task was not trivial and several trials had to be
performed in order to obtain jointed specimens of a reasonable quality. The final procedure used
is described in what follows.

To obtain the desired samples, a cubic sample of the rock with a 30-cm edge was cut (Fig. 5.1.a)
in order to create the sub-vertical joint set. Then, the pieces were reassembled (Fig. 5.1.b) and the
54-mm diameter cores (NX size) were drilled. In this way a potential reduction in the core
diameter was avoided (see Fig. 5.2). Once these sub-vertically jointed specimens were obtained
(Fig. 5.1.c), adhesive tape was used to re-join the two pieces of the core (Fig. 5.1.d). Finally, the
sub-horizontal joints (two sub-horizontal joints per specimen) and also the ends of each specimen
were cut (Fig. 5.1.e and Fig. 5.1.f). The frictional behavior of the cut surfaces is discussed
elsewhere (Alejano et al., 2012¢). Thus, 22 artificially jointed test cores composed of six parts
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were obtained (Fig. 5.1.g). The cut surfaces of the jointed specimens were planar and smooth with
a very slightly rough surface due to sawing.

Fig. 5.1. a) Cubic Blanco Mera granite sample with a 30-cm edge, prepared for cutting to obtain the sub-
vertical joint set. b) Reassembled cut rock ready to extract cores with a sub-vertical joint. c¢) Cores with a
sub-vertical joint. d) Re-joined core prepared for cutting to obtain the sub-horizontal joint set and the
final specimen length. e) and f) The cutting process for sub-horizontal joints and specimen ends. g) An
artificially jointed specimen. h) Final preparation of the plastic-wrapped jointed specimens.
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The mean dips of the joint sets were measured as 23.5 + 0.8° for the sub-horizontal joints, and
85 + 2° for the sub-vertical joints. Even though they were carefully cut, the relative orientation
between both joint sets showed a slight variation, although this did not seem to affect the final
results. Another slight problem noted when starting the compression tests was the fact that the
jointed specimens had to be re-joined in a specific manner and kept immobile while being placed
in the Hoek’s cell and as the test was prepared. Transparent plastic food wrap was used, which
was sufficiently strong to hold the test core pieces together without interfering significantly with
the deformational behavior of the jointed specimen. Once the jointed test core was wrapped in
plastic, the plastic borders were removed and the jointed specimens were ready to be tested (Fig.

5.1.h).

Width of the saw blade

Fig. 5.2. Problem encountered if the sub-vertical joint set is cut after, rather than before, obtaining the
core.

5.3. Testing

In addition to the tests performed on the intact cores (shown in Chapter 3), another 28 confined
compression tests with intact cores and 22 confined compression tests with jointed cores were
performed. These 50 newly performed tests had confining pressures in the range 0.2-12 MPa. It
was not physically possible to carry out properly unconfined tests on the jointed specimens.

As previously mentioned, radial strain is calculated using axial and volumetric strain by means
of Eq. (5.1).

g, — &
: 5.1
: (5.1)

A typical graphical result for a confined strength test is shown in Fig. 5.3, which also depicts
how to obtain the most significant geotechnical parameters: peak strength, o”*; residual

strength, o0,"; apparent elastic Young’s modulus, £; apparent Poisson’s ratio, vy and drop
modulus, M.
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Fig. 5.3. Stress-strain graph for confined (o3 = 4 MPa) compression test on a Blanco Mera granite
Jjointed test core. Shown also is how to obtain the values for peak and residual strength, 6/7*™* and o/,
apparent elastic Young’s modulus, E; apparent Poisson’s ratio, v; and the drop modulus, M.
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Pictures of all the specimens were taken before and after testing (Fig. 5.1 and Fig. 5.4). It
should be noted that failure in the jointed specimens most commonly appeared in the form of
shear bands (Fig. 5.4.b, Fig. 5.4.c and Fig. 5.4.¢), not always associated with the pre-existing sub-
vertical joint. The fracturing and straining associated with failure tended to be concentrated in the
intermediate layer of rock located between the sub-horizontal joints (Fig. 5.4.d).

The sub-horizontal joints showed evidence of frictional sliding in the form of rock flour, with
the amount of rock flour increasing with confining stress. For the BMD19 jointed test specimen
(o3 = 10 MPa), Fig. 5.4.b shows pieces #3 and #4 presenting a marked shear band and evidence
of rock flour.

Sub-vertical d)

joint

Shear
band

)

Fig. 5.4. Test specimens after compression testing. a) Sketch of the jointed core pieces. b) Shearing
through pieces #3 and #4 and evidence of the rock flour that usually appears in sub-horizontal joints. c)
Test core inside a sheath, showing the shear bands despite low confining pressures. d) After sheath
removal, pieces bounded by the sub-horizontal joints (#3 and #4) crushed in multiple pieces, with the
other pieces (#1, #2, #5 and #6) almost intact or showing signs of failure through shear bands. e) Shear
band crossing pieces #4 and #6.
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5.3.1. Intact test cores

A total of 28 triaxial tests with intact cores were performed applying rock mechanics suggested
methods (ISRM, 2007). Results for these intact specimens are presented in Table 5.1 and in
Appendix B.

5.3.2. Jointed test cores

Triaxial testing was set up for confining stresses in the range 0.5 MPa to 12 MPa. Basic
geotechnical parameter results for these artificially jointed specimens are reproduced in Table 5.2
and in Appendix B. It can be observed that there was greater variability in outputs (peak and
residual strength, elastic parameters and drop modulus) for jointed than for intact specimens,
attributable to the presence of joints complicating the post-yield strain bifurcation process.
However, typical behavior patterns, namely, increasing peak and residual strength as well as
elastic moduli with confinement, can still be observed.

Table 5.1. Results of testing on intact cores.

, o3 ook o/’ E v M
Specimen ——/ - MPa MPa GPa - GPa

BMI 02 132.44 ] 38.80 0.14 29.02
BM2 0.2 107.69 ; 25.88 0.29 -15.24
BM3 0.2 134.51 ; 39.18 0.20 20.18
BM4 0.2 136.37 ; 38.74 0.24 1371
BMS5 0.2 132.07 14 37.74 0.14 21.83
BM6 0.2 137.56 ; 39.55 0.16 -10.20
BM7 0.2 131.83 13 38.18 0.08 -8.36
BMS 0.2 126.45 9 33.89 0.11 21.56
BM9 0.2 14321 1 37.48 0.17 ;

BMI10 0.2 91.53 12 22.46 0.23 -14.28
BMI1 4 148.20 60 25.75 0.20 1217
BM12 0.2 93.05 10 27.52 0.20 -17.30
BM13 2 154.62 28 37.76 0.18 223.94
BM14 2 164.39 25 38.42 0.18 -17.93
BMI5 2 152.73 ; 37.96 0.20 -19.59
BM16 2 155.38 32 37.69 0.20 31.04
BM17 4 178.45 50 42.45 0.17 224.86
BMI8 4 176.58 53 40.50 0.19 -11.39
BM19 4 185.87 45 43.24 0.21 -17.26
BM20 6 21427 60 4523 0.17 31.24
BM21 6 227.03 55 44.98 0.19 -19.17
BM22 6 220.59 67 43.32 0.18 -16.92
BM23 10 254.57 80 43.95 0.14 21.74
BM24 10 246.52 65 44.76 0.13 2215
BM25 12 291.85 95 46.92 0.12 126.65
BM26 12 268.67 76 46.06 0.16 224.67
BM27 12 292.11 120 48.84 0.16 -19.57
BM28 12 289.11 90 48.54 0.14 ;




Table 5.2. Results of testing on jointed cores.

_ 03 ok o E v M
Specimen
MPa MPa MPa GPa - GPa
BMDI1 6 144.87 76 20.45 0.23 -19.67
BMD2 2 66.34 35 14.3 0.39 -8.64
BMD3 0.5 44.24 20 9.46 0.18 -2.13
BMD4 0.5 60.17 20 7.62 0.12 -18.27
BMDS5 0.5 50.20 20 8.93 0.08 -5.92
BMD6 1 69.34 25 9.95 0.15 -
BMD7 1 62.90 20 12.25 0.27 -7.64
BMDS 1 79.94 20 14.16 0.24 -14.05
BMD?9 2 94.66 33 16.03 0.14 -8.17
BMDI10 2 96.09 40 14.21 0.26 -6.33
BMDI1 4 108.12 60 14.23 0.13 -6.22
BMDI12 4 137.08 65 22.61 0.22 -10.92
BMD13 4 129.13 33 17.85 0.11 -14.60
BMDI14 6 129.63 68 17.93 0.10 -9.32
BMDI15 6 156.33 73 23.45 0.09 -57.37
BMDI16 10 193.13 105 27.07 0.12 -40.55
BMD17 10 165.14 120 16.49 0.11 -19.16
BMD18 10 216.38 100 27.84 0.18 -25.05
BMDI19 10 177.76 80 24.01 0.11 -8.99
BMD20 12 210.30 130 24.59 0.15 -26.69
BMD21 12 175.51 110 14.84 0.13 -
BMD22 12 213.35 115 26.94 0.09 -
5.4. Results interpretation

Although the data collected during tests are significant in themselves, much can be learned
from a comparison of the intact and jointed core test results, as clearly illustrated by Fig. 5.5. One
interesting feature of these data is that, in all cases, the stress-strain response of the jointed cores
began to approximate that for the intact cores for large strains; this was true for both the lateral
and axial strain curves. It should be noted that the point at which the two curves began to match
appeared to move closer to the curve peak as the confining stress increased.

Jointed cores compared to intact cores presented a smaller Young’s modulus. This makes
sense, given the expected lesser stiffness of the joints as compared to the intact rock matrix. It is
also consistent with the general trend noted on comparing intact rock and rock mass stiffness
(Hoek & Diederichs, 2006). The jointed core stiffness increased very quickly as a function of
confining stress; additionally, the difference between the observed stiffness of the jointed and
intact core decreased with increasing confinement. This trend is consistent with observations
regarding brittle-ductile transition (Wawersik & Fairhurst, 1970; Farmer, 1983).

Peak strength reduced from the intact cores to the jointed cores, as was to be expected, and the
difference became smaller as confining pressure grew. For o3 = 2 MPa, peak strength for the
jointed cores was approximately 50% of that for the intact cores; meanwhile, for o3 = 12 MPa,
peak strength in jointed cores increased to approximately 70% of the values for intact cores.

Residual strength was basically the same for both jointed and intact specimens and for all the
tests; the differences observed in some cases were similar to those expected due to the natural
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heterogeneity of the rock. It appears that all these observed trends are consistent with a brittle-
ductile transition at a high confinement stress level, at which the rock or rock mass would behave
in an elastic-perfectly-plastic or ductile manner, although this transition would be influenced by
many other factors which are beyond the scope of this study.

Complete stress-strain curve (o; =2 MPa) Complete stress-strain curve (o; =4 MPa)
—B2 TRX (Intact) —BMDI0 (Jointed) —B8 TRX (Intact) —BMDIT (Jointed)
300
-
o
a [
250 {1 2
6

S0 Jg (0.1 %)

Complete stress-strain curve (o; = 6 MPa) Complete stress-strain curve (o; = 10 MPa)

—B11 TRX (Intact) —BMD1 (Jointed) —B13 TRX (Intact) —BMDI18 (Jointed)

Complete stress-strain curve (o; = 12 MPa)
—BM27 (Tntact) —BMD22 (Jointed)

-40

Fig. 5.5. Comparison of complete stress-strain curves between intact and jointed cores for different
confining pressures. a) o3 = 2 MPa, b) 03 = 4 MPa, ¢) 03 = 6 MPa, d) 03 = 10 MPa, e) o3 = 12MPa.

Finally, it should be noted that the measured volumetric strains were smaller in jointed cores
than in intact cores, which indicates a lower tendency for the jointed specimens to dilate. This can
be explained by the existence of smooth (i.e. non-dilatant) fractures which may limit the need for
new, dilatant extension cracks to form during the deformation process. Furthermore, volumetric
strain curves for jointed cores seemed to have a similar curvature to the intact rock curves.
Qualitatively, this would suggest that the dilation angle decay pattern was similar in both cases.

5.4.1. Classic parameters

The results obtained and presented in Table 5.1 and in Table 5.2 were analyzed for the main
geomechanical features of the rock. Results obtained in this study with intact cores were added to
the already existing data yielded by previous tests (Chapter 3). First, peak and residual Mohr-
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Coulomb (M-C) and Hoek-Brown (H-B) failure criteria were fitted to the peak and residual
strength values obtained as a result of testing. These fits, along with a comparison between jointed
and intact cores, are shown in Fig. 5.6. Table 5.3 and Table 5.4 show the main rock geomechanical
results for intact and jointed cores of Blanco Mera granite.

Peak and residual tests results and M-C and H-B
failure criteria for both jointed and intact cores

-M-C peak intact cores

==M-C residual intact cores

&, (MPa)

==M-C peak jointed cores
==M-C residual jointed cores
==H-B peak intact cores

==H-B residual intact cores

H-B peak jointed cores
==H-B residual jointed cores

© Peak strength intact cores

¥ Residual strength intact cores

© Peak strength jointed cores

0 15
a; (MPa) ¥ Residual strength jointed cores

Fig. 5.6. Peak and residual strength test results and fits to Hoek-Brown (H-B) and Mohr-Coulomb (M-C)
failure criteria for jointed and intact cores.

Fig. 5.7 shows the residual strength results in more detail. According to the typical levels of
accuracy usually encountered in rock engineering, the residual strength can be said to be the same
in the intact and jointed cores. Fig. 5.7 shows that the linear fit for all the cores has an intermediate
coefficient of determination between the regular cores and the jointed cores, which indicates,
statistically speaking, that all values belong to the same set.

Residual strength tests results and linear fits

200 X% Residual strength intact
x cores

¢ Residual strength jointed
cores

1 .
2 —Linear (Intact cores)

==L inear (Jointed cores)

—Linear (All cores)

v =8.5589x + 16.859

50 R*=10.9393
y=7.8453x +16.296
R*>=0.8542
0 % -
0 5 10 15 y=7.634x + 14.829

Fig. 5.7. Comparison between residual strengths fits.



With respect to peak strength, the M-C fits suggest a loss in cohesion strength from the intact
to jointed cores, while the frictional component remained approximately equivalent. It should also
be noted that the loss in strength from peak to residual was primarily due to a drop in the cohesive
strength component.

Since the H-B failure criterion in laboratory testing is intended for intact rock, it is convenient
to consider jointed test cores as small-scale rock masses. This involves finding an equivalent
geological strength index (GSI) value that will estimate the generalized H-B failure criterion for
the case of jointed specimens.

Table 5.3. Basic geomechanical results for intact cores of Blanco Mera granite.

Intact core results
Hoek-Brown Mohr-Coulomb

0l = 126.68 MPa
Bpear = 60.37°
Cpeak = 16.76 MPa

R?=0.9995

o/**=122.73 MPa
Peak strength m=41.61
R’ =0.9914

o = 14.30 MPa 0% =16.74 MPa

Residual strength m=32.70 Pres = 48.54°
R2:08284 CreS:3.17 MPa
R?=0.9979
i Oim=6.12 MPa
E Emos—o—27.95 GPa E =2.04-In(c3) + 38.15
v v=0.17
M Mipo320= -25.41 GPa

Table 5.4. Basic geomechanical results for jointed cores of Blanco Mera granite.

Jointed core results

Hoek-Brown Mohr-Coulomb
GSI=281.5 0% = 5779 MPa
0" = 49.37 MPa* Ppeak = 58.95°
Peak strength m=19.57 Cpeat. = 8.03 MPa
R°=0.9186 R’ =0.9992
GSI=43.8 o/ =16.65 MPa
. o/ =5.38 MPa* Pres = 52.36°
Residual strength =526 e =284 MPa
R’ =0.6056 R’ =0.9997
O; o.m = N/A
E Enos=0=N/A E=4.62"In(c3) +11.95
v v=0.16
M Mm’g'3¢0: -14.65 GPa

* Value of the fit for the jointed test specimens at 03 = 0, not the value of o; as calculated
by the generalized Hoek-Brown criterion as explained in the text.

Using the known intact properties and with a fixed disturbance factor (D = 0), the expected
rock mass strength for many values of GSI (based on the relations defined by Hoek et al., 2002)
were calculated. Comparing these expected values to the jointed core values, the GSI value that
provided the best strength fit for each confining pressure was determined. For the peak-strength
state, this GSI-equivalent value was found to be between 77.3 and 83.9, for a mean value of 81.5
and a standard deviation of 2.3. For the residual strength state, the GSI-equivalent value ranges
between 33.5 and 52.5, for a mean value of 43.8 and a standard deviation of 6.3. Although a mean
GSl-equivalent value was considered, a slight dependence on confinement can be observed, that
was more significant in the residual state, as can be seen in Fig. 5.8.
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Equivalent GSI vs. Confining pressure

X Peak equivalent GSI © Residual equivalent GSI
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Fig. 5.8. Evolution of the GSI-equivalent value with confining pressure.

In view of the GSI classification scheme proposed by Marinos & Hoek (2000) and further
developed by Cai et al. (2004), the structure of the jointed cores can be classified as “blocky”
(given their scale relative to the size of the system) and that the surface condition can be
considered to be fair-good (although the artificial joints did not directly match any of the
descriptions given). Based on these classifications, the actual GSI value of the jointed cores
should be in the 60-70 range. The fact that the actual GSI was less than the GSI required to fit the
strength of the cores is consistent with practical experience which suggests that the GSI strength
reduction method of Hoek et al. (2002) may underestimate rock mass strength. The increase in
the calculated GSI as a function of confinement (and therefore also the difference between
calculated and actual GSI values) is also consistent with ongoing work that finds that the equations
of Hoek et al. (2002) become increasingly inaccurate at higher GSI values.

Knowing the appropriate GSI values, the generalized H-B failure criterion can be fit to the
jointed core data. This failure criterion calculates a value for o which corresponds to the
unconfined compressive strength of the intact rock, although, in this case, the value obtained for
jointed cores (Gijoinea = 137.97 MPa) was slightly larger than that obtained for intact cores
(Gcijintact = 122.73 MPa). Even if ov; joinea Was forced to coincide with ov; iner, differences between
m (Mpeak forced = 22, Mresidual, forced = 5.23) and fits for peak and residual o. (0 peak, forcea = 43.91 MPa,
O residual, forced = 5.41 MPa) were not significant due to the natural variability of the materials. The
0" and /s values shown in Table 5.4 correspond to those for the fits of the jointed specimens
at null confining pressure.

When trying to fit the H-B criterion to the residual data, some of the fits were found to produce
o7 < 0. This could be fixed by excluding some tests from the analysis to obtain reasonable data.
It was commented above that the residual strength was roughly the same for both the intact and
jointed cores (see Fig. 5.5, Fig. 5.6 and Fig. 5.7). However, using the generalized H-B criterion
to account for GSI correction, the approach produced a value of o/ lower than expected (see
Table 5.4). Moreover, the resulting coefficient of determination was quite poor (0.6056).
However, the M-C criterion calculated a more reasonable value for this parameter (as it is more
or less the same as for intact cores), with a very high coefficient of determination (0.9997). This
can be attributed to the fact that residual strength results tend to align and therefore can be better
represented by means of the M-C approach, as can be seen in Fig. 5.9.
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Residual strength tests results and M-C and H-B
failure criteria for jointed cores

==M-C residual jointed cores  ==H-B residual jointed cores
© Residual strength jointed cores
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Fig. 5.9. Residual strength test results and H-B and M-C failure criterion fits for jointed cores. It can be
seen that the M-C fit was better than the H-B fit due to the linearity of the test results.

In the previous study on intact cores (Chapter 3), the apparent Young’s modulus, £, was fitted
with a linear function according to confining stresses. As can be seen in Fig. 5.10, intact cores
appeared to be fit well by a linear function, and the only points which deviated from this trend
were those corresponding to o3 = 0 MPa (and now o3 = 0.2 MPa). After performing these tests in
jointed test cores, it became evident that a better fit for Young’s modulus was a logarithmic
function depending on confining stress (see Fig. 5.10); these are the fits that appear in Table 5.3
and in Table 5.4.

Apparent Young's modulus vs. Confining pressure

50 * Intact cores
45 . & JOinted cores
| e ——
40 A .4
==L inear (Intact cores)
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g F cores)
9 25 & e =—Logarithmic (Intact cores)
o5 [

R*=0.4528

15 / y=0.2471% + 40.075
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v =2.0381In(x) + 38.151
5 R? = (0.8893
0+ v =4.6219In(x) + 11.948
0 5 10 o; (MPa) 15 R*=0.9806

Fig. 5.10. Apparent elastic Young’s modulus versus confining pressure.

It should be noted that a logarithmic function cannot be valid for unconfined conditions
because as 03 = 0 MPa is approached, the apparent Young’s modulus, £, would tend to minus
infinity. Therefore, it is necessary to truncate it at a value near to o3 = 0 MPa. In the case of the
intact cores and for this granitic rock, the logarithmic expression could be truncated at
o3 = 0.1 MPa and a separate value of £ for o3 = 0 MPa (i.e. the mean of the values obtained in
unconfined tests, £, .3-0 = 27.95 GPa) could be recorded. In the case of the jointed cores, the
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value of E for 03 =0 MPa could be considered equal to or near to zero, since the jointed specimens
could not sustain much load without significant joint slip occurring. This is why no elastic
modulus value is reported for unconfined conditions in Table 5.4. The same logic can be applied
to account for the lack of recorded tensile strength for the jointed cores.

The apparent Poisson’s ratio was also graphed versus confining pressure and compared for the
intact and jointed cores. This parameter was approximately constant with respect to confining
stress, although there was a fair degree of variability, particularly at lower confining stresses (Fig.
5.11).

The drop modulus, M, was computed as the mean negative slope of the axial stress-axial strain
curve after peak strength and in the first 50% of softening in terms of strength difference. It should
be noted that, since the softening portion of the stress-strain curve was non-linear, the drop
modulus was not actually a constant, so the results should only be taken as reasonably
representative estimates. Average values for this parameter are shown in Table 5.3 and in Table
5.4.

Fig. 5.12 shows estimated values for the drop modulus graphed against o;. At these relatively
low confining pressure values and for such brittle materials, a slightly decreasing trend could be
observed as confining pressure grew, as reported in classic studies by Von Karman (1911). The
drop modulus results for the unconfined strength tests are excluded due to the brittleness of the
granitic rock used and the corresponding likelihood of significant system influences on the
softening process. Bearing this in mind, it is still clear that the drop modulus for the jointed cores
was less extreme than that for the intact cores —as would be expected, since jointed cores present
less brittle behavior.

As mentioned previously, the stress-strain curves for the jointed cores approximated those of
the intact cores following the attainment of some specific strain; as such, one can consider the
jointed cores to be “pre-softened”. In other words, it is as if the jointed cores had already
undergone the deformations corresponding to the earlier, steeper part of the softening portion of
the curve.

Apparent Poisson's ratio vs. Confining pressure
X Intact cores € Jointed cores
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Fig. 5.11. Apparent Poisson’s ratio versus confining pressure.
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Drop modulus vs. Confining pressure
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Fig. 5.12. Drop modulus versus confining pressure for the intact and jointed cores.

5.4.2. Dilatancy

The confining pressure equipment incorporated in the servo-control press available at the John
P. Harrison Rock Mechanics’ Laboratory allowed to obtain the complete stress-strain curve for
standard rock specimens in triaxial tests (Chapter 3). It is useful to have these data for both intact
and jointed specimens, so as to be able to compare the dilatancy of these two different laboratory-
scale rock mass analogues.

Dilatancy is defined as a volume change resulting from the shear distortion of an element in a
material. The dilation angle, i, is an appropriate parameter for describing the behavior of a
dilatant material, as it represents the ratio of plastic volume change to plastic shear strain under
plane-strain conditions.

Increasingly, excavation design has come to rely on numerical studies. Due to the difficulties
in estimating material parameters and in properly extrapolating lab data to rock masses, designs
are often based on simple behavior models, such as elastic-perfectly-plastic models. More
complex behavior models, like strain-softening models, are used far less frequently and the role
of dilatancy is often ignored, even if some modelers have recently invested efforts to account for
dilation phenomena (Zhao et al., 2010; Alejano et al., 2012b; Walton & Diederichs, 2012;
Levkovitch et al., 2010).

The main aim of this research was to extend the study of dilatancy to jointed rocks and rock
masses and to further enlarge the post-failure database available in the literature, given that
information on jointed rocks is lacking.

5.4.2.1. Estimating confining stress and plastic parameter dependent dilation angles

The dilation angle was computed, as shown in previous chapters, based on the equation
proposed by Vermeer & De Borst (1984):
. gr
Y =arcsin———— 5.2
=2&l + &7 >2)
Note that the denominator fraction represents, in absolute terms, the recommended plastic
parameter (Alonso et al., 2003), defined starting from internal variables in plane-strain conditions,
as follows:
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y'=g"-&f (5.3)

This formulation requires decomposition of the total strain into their elastic and plastic
components:

&=¢ +& (5.4)

This can be done graphically as shown in Chapter 3 (Fig. 3.12), particularly with the help of
unloading-reloading cycles, which allow differentiation between the reversible (elastic) and
irreversible (plastic) components. Even so, analysis of dilation angles from a standard triaxial
compression test is still difficult, due to the inelastic behavior of the stress-strain curve, variability
in the elastic parameters and the occurrence of non-homogeneous deformation modes (bifurcation
and subsequent axial splitting and shear banding).

It is still important to be aware of some of the issues raised in investigating complete stress-
strain curves in rock masses (Hoek & Brown, 1980a; Bieniawski, 1976; Price & Farmer, 1979).
Between the onset of stable fracture propagation —also named crack initiation (Diederichs, 1999;
Carter et al., 2008)—, and unstable fracture propagation —also named crack damage— (Price &
Farmer, 1979; Diederichs, 1999) or long-term uniaxial compressive strength— &5 is a negative
value whereas &7 is null, so the dilation angle has limited physical meaning in this range. Adding
to the difficulty in obtaining accurate dilation angle values (Alonso et al., 2003) are other inelastic
and non-strictly plastic effects, such as crack closure in the initial stages of stress application
(resulting in the initial concave form of the stress-strain curve) and rock damage over long-term
peak stress.

Some authors have studied dilation in the pre-peak stage (Kwasniewski & Rodriguez-Oitabén,
2012), but the concept of dilatancy as defined above only makes sense in the post-failure stage,
even if, at the peak strength level, the plastic parameter is in the order of some milistrains and
inelastic volumetric strain attains values in the range 0.04% to over 0.1% (Scholz, 1968).

5.4.2.2. Dilatancy results

Using the approach described in Chapter 3, point clouds for the dilation angle value against
the plastic parameter, y?, were produced for each confinement level. Jointed specimens dilation
angles were plotted as shown in Fig. 5.13, revealing dilation angle dependencies like those
described in Alejano & Alonso (2005): the dilation angle depends, first of all, on confining stress
(i.e. as confinement grows, the dilation angle diminishes) and then on plastic shear strain (i.e. as
plastic shear strain develops, the dilation angle decays).

Zhao & Cai (2010a) proposed an expression to fit laboratory data that relates dilation angle to
plastic shear strain (y?, expressed in percentage deformation):

ab (e’byp —e " )

c—b
As previously observed (Zhao & Cai, 2010a; Arzia & Alejano, 2013), although each
parameter (a, b and ¢) in the Zhao & Cai (2010a) model affects the whole curve, each one mainly

controls just one aspect. Thus, parameter a mainly controls peak dilation angle, parameter b
mainly controls peak dilation angle location, and parameter ¢ mainly controls rate of decay.

(5.5)

W:

Zhao & Cai (2010a) accounted for confinement dependency by making these three parameters
confining stress dependent using Eqgs. (5.6), which introduce coefficients to define each
parameter:
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Fig. 5.13. Dilation angle versus plastic shear strain for various confining levels. Laboratory results and
fits for each confining level for jointed cores.

Based on the previous comment regarding the similarity in dilation decay trends between intact
and jointed cores, parameters b and ¢ (i.e. by, bz, b3, c1, ¢2 and ¢;3) in the Zhao & Cai (2010a) model
were set to be the same as those for the intact cores. In other words, only the component
parameters for a (i.e. a;, a> and a3) were varied in an attempt to locate the best fitting model. This
method of fitting to the data provided satisfactory models, as can be seen in Fig. 5.13 and in Fig.
5.15.

The individual component parameters used to define a, b and ¢ for both jointed and intact
specimens are presented in Table 5.5. It is interesting to note that, in the fit process to obtain the
a parameter using Equations (5.6), a value of a; equal to that for the intact cores was estimated,
whereas the a, coefficient decreased to about half and a3 approximately doubled.

Table 5.5. Plastic shear-strain parameters and confining-pressure-dependent dilation angle model as
proposed by Zhao & Cai (2010a) for both jointed and intact test cores.

aj as as by b> b; i C2 Cs3
1 21.13 17.92 9.85

2 21.13  36.71 4.92

* 1, jointed test cores; 2, intact test cores

20.63 2944 2.97 0.047  0.049  0.589

Fig. 5.14.a shows variations in the a parameter in line with confining pressure, the fit
(Equations 5.6) obtained with the coefficients a;, a» and a; for the jointed specimens and the
previously obtained fits for the intact cores (Chapter 3). Fig. 5.14.b shows the peak dilation angle
as a function of confining pressure (strongly linked with the a parameter); it also shows a slight
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dispersion of the a parameter for the jointed cores compared to the intact cores. This discrepancy
may be due to the fact that » and ¢ parameters have been fixed. With slight variations in the ¢
parameter (which would not significantly affect the fit), a better fit for a could be obtained, but I
do not believe that this improvement justifies the increased complexity that would be associated
with such a decision. Similar to the dilation approach to rock masses by Zhao & Cai (2010b), re-
estimating six coefficients that are basically the same as for the intact cores was avoided, even if
some accuracy is lost.

a parameter vs. confining pressure

Peak dilation angle vs. confining pressure
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Fig. 5.14. Variations as follows: a) the fit for parameter a in accordance with Equations (5.6); and b)
peak dilation angle for different confining pressures for jointed and intact cores. Note the strong
relationship between this parameter a and peak dilation angle (almost equal).

Fig. 5.15 shows laboratory data and fit for each confining pressure, comparing jointed test
cores with intact cores. Although there is no data for intact cores at confining pressures of 0.5 MPa
and 1 MPa, the previously obtained fits (Chapter 3) were added for comparison purposes. A
similar image for confining pressure of 0 MPa in jointed cores is not shown because, as previously
mentioned, in the context of this testing campaign, jointed cores could not sustain any significant
load in unconfined conditions. In this Fig. 5.15 it can also be clearly seen, as commented above,
that with fixed values for the b and ¢ parameters, the Zhao & Cai (2010a) model fitted all the data
reasonably well.

It is also evident that the dilation angle was lower for jointed cores than for intact cores at low
confining pressures (i.e. 0.5 MPa, 1 MPa, 2 MPa, and 4 MPa). For 03 > 4 MPa, however, the
angles were almost equal. In most excavation settings, yield zones tend to occur near free faces
and so have low confinement stress values, making this an important feature of the behavior to
be noted.

Based on these observations it becomes apparent that as plastic shear strain grows, the dilation
angle tends to be equal in jointed and intact cores, but when the difference in peak dilation angle
is large (confining pressures are low), a very large amount of strain is required before the curves
approach each other.

Summing up, in addition to the already known dilation angle dependencies on confining
pressure and plastic shear strain, it is evident that dilatancy also depends on the level of jointing
in the rock mass. In the future, this relationship could be quantified using GSI or some other joint
or geotechnical quality index, but in a complex form that probably requires much more testing
and further research.
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Fig. 5.15. Dilation angle versus plastic shear strain fits for various confining levels, with laboratory
results for both jointed and intact cores.



5.5. Conclusions of this chapter

Within the general framework of a research project referring to the post-failure behavior of
rocks and rock masses, an experimental programme was set up to first study post-failure stress-
strain behavior in standard granite specimens, and to then extend the study to artificially jointed
granite specimens. The triaxial strength tests were performed with unloading-reloading cycles
and volumetric strain measurements. This allowed to locate the irrecoverable strain locus and to
obtain reliable values for the dilation angle. In a previous study, 31 strength tests on Blanco Mera
granitic rock were performed. In this study a further 28 confined strength tests on intact cores and
22 confined strength tests on artificially jointed specimens intended to simulate a small-scale rock
mass were conducted. These artificially jointed specimens were obtained from the same original
intact rock.

Peak and residual strength, apparent Young’s modulus, apparent Poisson’s ratio and
approximate drop modulus were estimated for each test. Results were compared to those for the
same kind of tests performed on intact rock specimens. While peak strength presented much lower
values than for intact rock, residual strength envelopes for jointed and intact rock samples were
more or less the same. Since jointed specimens are intended —as mentioned— to simulate a
small-scale rock mass, a GSI-equivalent value was obtained to be able to fit the generalized H-B
criterion to test results. This GSI-equivalent value could be used in future to check obtained results
against real rock mass behavior and to analyze scale problems. Apparent elastic and drop moduli
were less extreme in jointed rocks than in intact rocks.

It is also interesting to note that axial and radial strain curves (represented against stress) in
jointed specimens, even if they started differently from those in standard specimens, tended to
mimic these curves starting from a particular stress level in the descending branches of these
curves. An interpretation of this observation in energy terms could be a topic for further research.

The evolution of the dilation angle was computed throughout the deformation process for each
tested specimen. As previously observed in standard tests, this angle was shown to be dependent
on both confining stress and plastic shear strain, and it appears that it is also dependent on the
level of jointing in the specimen. This relationship could be related to the GSI or to some other
joint or geotechnical quality index reflecting the structure of the rock. So future research will seek
dilation models that have fewer parameters than the Zhao & Cai (2010a) model, while not
sacrificing accuracy significantly.

At low confinement stress levels, the jointed rock specimens tended not to dilate as much as
the intact rock specimens (as if volumetric strain were controlled by existing planar joints), but
dilated in a similar way to intact rock specimens submitted to higher confinement stress. Although
test results were fitted to the Zhao & Cai (2010a) model, obtaining very good results, further
experimentation will be required in order to be able to propose a sufficiently reliable and more
general rock mass dilation model. In particular, the impact of varying joint spacing, orientation
and surface conditions need to be researched further. Future work will also encompass
implementation of the derived approaches in numerical models.
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6. Stress-strain behavior of granite specimens as a

function of their structure

6.1. Introduction

The Hoek-Brown failure criterion is an empirical yield surface used to predict the failure of
rocks and rock masses (Hoek & Brown, 1980a, Hoek & Brown, 1980b; Hoek et al., 2002). When
applied to rock samples, its main difference with the also popular Mohr-Coulomb failure criterion
is its non-linearity, which better reflects rock peak strength as derived from laboratory triaxial
tests. However, the main breakthrough of the Hoek-Brown approach for the rock mechanics
community was the possibility it opened to empirically estimate the failure criterion of the rock
mass at the scale of the engineering project. The basic idea of the Hoek-Brown criterion was to
start with the properties of the intact rock and to add factors —initially the RMR (Hoek & Brown,
1980a; Bieniawski, 1976) and then the GSI (Hoek et al., 2002; Hoek et al., 1998; Marinos &
Hoek, 2000)— to reduce those properties because of the existence of joints (structure) in the rock.
In parallel with this failure criterion, a number of correlations have been proposed to estimate in
a more or less accurate way other relevant geomechanic parameters of the rock mass such as the
elastic modulus (Hoek & Diederichs, 2006) or post-failure behavior features (Hoek & Brown,
1997).

The Hoek-Brown criterion has been extensively applied with reasonable success to a wide
quantity and variety of rock engineering projects all over the world in the last decades. This seems
a clear indicator that the approach is sound and/or conservative enough so as to provide
appropriate designs and good explanations to the questions asked in practice. Additionally, large
scaled in situ shear tests have shown a reasonable degree of agreement between observed shear
strength and Hoek-Brown estimates (Cai et al, 2004).

The reduction of strength properties in line with the diminishing of the rock mass quality
reflected in the Hoek-Brown approach implies strength reduction with scale and jointing
undifferentiated. At small scale, samples from a few centimeters up to one meter showed a
significant strength reduction for coal (Bieniawski, 1968) probably due to cleat (Medhurst &
Brown, 1998), but not such a significant reduction (up to 80% of the original value) for a number
of'igneous rocks (Martin et al., 2014) where the Representative Elementary Volume (REV) seems
to be much smaller than in coal. This value diminishes to 70% if one accounts for Hoek & Brown
classic results on testing various diameter samples of different rocks (Hoek & Brown, 1980a). In
this way an interesting question to be answered is whether strength and deformability reduction
(and also post-failure behavior) are linked to the scale or to the structure (understood as the set of
discontinuities crossing the rock sample analyzed), or to both of them, and up to what extent each.

Starting from the classic Hoek & Brown’s idealized diagram showing the transition from intact
to heavily jointed rock mass with increasing size (Hoek & Brown, 1980b), let’s select a
sufficiently large circle representing rock mass behavior for tunneling design purposes. This is
called circle ‘a’ in red color in Fig. 6.1. If an homothetic transformation of circle ‘a’ is performed
keeping its original joints to produce double diameter and quadruple diameter circles, circles ‘b’
green and ¢’ blue respectively as in Fig. 6.1 will be obtained. If now circles of the same size than
circle ‘a’ but within circles ‘b’ and ‘c’ respectively are selected, circles ‘d’ and ‘e’ respectively
will be got.

If one could know the behavior of these (representative rock mass) samples to obtain
conclusions; one should have clear that 1) circles ‘a’, ‘b’ and ‘c’ have different sizes (scale) but
their structure is (homothetic) the same 2) circles ‘a’, ‘d” and ‘e’ have the same size (scale) but
their structures are different. So in order to study the role of the structure on the behavior of a
rock mass, it is interesting to study the behavior of circles ‘a’, ‘d’ and ‘e’. One cannot test circles,
so, in this chapter, stress-strain results of tests on classic rock specimens with variable structure
are shown. Additionally, it is relevant to recall that based on studies by different authors focusing

This chapter contains some of the results presented at the 13" ISRM Congress with the following citation: Arzua, J.,
Alejano, L.R. & Pérez-Rey, L. 2015. Effect of scale and structure on the strength and deformability of rocks. 13" ISRM
Congress 2015. International Symposium on Rock Mechanics. 10-13, May. Montreal, Canada



on hard rock and compiled by Martin et al. (2014), the role of scale (alone) may not be as
important as it is in coal.

Fig. 6.1. Concepts of scale and structure in rock masses. a) rock mass sample representative of rock mass
behavior at the scale of the engineering work, as_for Hoek & Brown (1980b); b & c: double and
quadruple diameter homothetic transformation of circle a; d & e: rock mass samples of the same size
than circle a but with the original structures corresponding to a, b and c respectively.

If this is true, behavior of circles ‘a’, ‘b’ and ‘c’ may not be too different. If this is the case,
the behavior of a standard rock specimen presenting a simple structure as those showed in this
chapter could be related to that of an equivalent rock mass with a similar structure.

Though this way of thinking can be considered speculative, it is true that efforts to perform
complete triaxial testing on rock samples of the same rock with different simple structures have
been scarce in the past. Therefore, this chapter presents results of complete stress-strain curves
on triaxial tests in granite samples including intact and two differently structured types of samples.
Interpretation of results provides some insight in rock and rock mass behavior, including post-
failure behavior, where less information is typically available. Previous trials to study the behavior
of fissured rock specimens used materials built from plaster of Paris and silica sand and, either,
only investigated unconfined behavior (Kulatilake et al., 1997; Kulatilake et al., 2001) or they
focused on the role of sliding through pre-existing joints (Ramamurthy & Arora, 1994; Brown &
Trollope, 1970).

6.2. Test setup

The testing equipment has been described in previous chapters and is available elsewhere
(Arzua & Alejano, 2013; Arzaa et al., 2014) so only a brief summary is presented here. The John
P. Harrison Rock Mechanics’ Laboratory of the University of Vigo has available a fully servo-
controlled press that allows to perform compression triaxial tests with unloading-reloading cycles
and to measure the lateral component of the volumetric strain by means of the amount of hydraulic
fluid that gets in (or out) the triaxial cell in order to maintain the confining pressure. The axial
strain is measured using linear variable differential transformers (LVDTs) attached to the lower
platen of the press by means of industrial magnets. The radial strain can be computed based on
axial and volumetric strains.

The rock tested was a granitic rock locally known as Blanco Mera, which is bright, white-
colored and coarse-grained. This rock has been already characterized in terms of its geological
and chemical nature (Chapter 3) and has been previously tested, both on intact (Chapters 3 and 5)
and 142 (one sub-vertical and two sub-horizontal joints) jointed specimens (Chapter 5). All
samples, including those newly tested came from the same block of this homogenous granite.

The jointed specimens preparation has also been described in Chapter 5 and it is published
elsewhere (Arzuaa et al., 2014) but in this case, instead of having one sub-vertical and two sub-
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horizontal joints (Fig. 6.2.a), the specimens have two sub-vertical and three sub-horizontal joints
(i.e. 2+3) (Fig. 6.2.b). Specimen size and joint surface features are also the same as in Chapter 5,
the only differences are that the mean dip of the sub-vertical joints is 77.9+1.2° the mean dip of
the sub-horizontal joints is 22.7+0.8° and the size of the pieces forming the specimen is smaller.

Remark that this low sub-horizontal angle was chosen to avoid sliding through these joints,
since if it is the case, strength results will be controlled by the strength of the joints as in other
studies (Kulatilake et al., 1997; Kulatilake et al., 2001; Ramamurthy & Arora, 1994; Brown &
Trollope, 1970) and not by the general structure. Two different relative orientations of the joint
sets (Fig. 6.2.c and d) have been studied in order to try to determine whether this feature has any
influence on the results or not. The jointed specimens were re-joined enveloping them by means
of food wrap and then, they were located inside the triaxial cell.

C) svil  svj2 d) svjl  svj2

shjl = shjl =
shj2 ~ shj2
L L
shj3 ~ shj3 ~|
D D

Fig. 6.2. a) (1+2) (one sub-vertical, two sub-horizontal) jointed specimen, as studied in Chapter 5. b)
(2+3) (two sub-vertical, three sub-horizontal) jointed specimen, this study. c) and d) sketches of the
different relative orientations of the sub-vertical and sub-horizontal joints of the (2+3) jointed specimen,
explained in the text.

Dershowitz & Herda (1992) defined fracture density or intensity (P32) as the area of fractures
in a volume of rock. In the tested specimens, and for quantification purposes, this fracture density
is calculated in 33 m?m’ for (1+2) jointed specimens and 50 m?m’ for the (2+3) jointed
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specimens. No simple way exists to relate this fracture density in terms of RQD, GSI or any other
commonly used classification system.

6.3. Testing

In addition to the tests performed in intact (Chapters 3 and 5) and (1+2) jointed cores (Chapter
5) another 20 confined compression strength tests have been performed, 12 with the relative
orientation of the joints showed in Fig. 6.2.c and 8 with the relative orientation showed in Fig.
6.2.d. The confining pressure of the tests ranged from 1 to 12 MPa.

Axial strain is measured by means of two LVDTs, and volumetric strain is derived from fluid
and platen displacement, so it is possible to compute the radial strain (Medhurst & Brown, 1998;
Arzta & Alejano, 2013; Farmer, 1983). In this way, it is possible to obtain the complete stress-
strain curve for a single test, as depicted in Fig. 6.3. This Fig. 6.3 also illustrates how the most
significant geomechanical parameters are obtained, including peak strength, oi"*, residual
strength, 07" apparent tangential (or average) and secant elastic Young’s moduli, £, and Ej,
and apparent Poisson’s ratio, v. Additionally Fig. 6.3 shows the variable nature of the known as
drop modulus, M, and how it is possible to delineate the locus known as irrecoverable strain locus,
which can be used to investigate post-failure behavior.

Complete stress — strain curve
2+3 Jointed specimen JBM9 (o; = 4 MPa)

o eak 100 1
75
2
_ - M:
G]re,s'zduaf ~1 -
50
25
tE/ v
230 &(0.1%) 20 10 10 20 & (0.1%) 30

£, (0.1%)

25 Irrecoverable strain locus

Fig. 6.3. Complete stress-strain curve result of a confined (o3 = 4 MPa) compressive strength test with
unloading-reloading cycles and the indication of where the relevant parameters are obtained.

The tests were performed with unloading-reloading cycles. This is done to check that failure
criteria are evolving, that is, once attained peak strength, in every forward reloading cycle, the
peak axial stress attained marks the strength of the already yielded rock characterized by a
particular damage level or plastic parameter. Unloading-reloading cycles can be also used to
obtain the irrecoverable volumetric strain locus, which links the lowest volumetric strain value of
each cycle (Fig. 6.3) and allows estimating the dilation angle as proposed by Medhurst & Brown
(1998) and used by others (Alejano & Alonso, 2005; Walton et al., 2015a).

Pictures of the specimens were taken before (Fig. 6.4.a) and after (Fig. 6.4.b and c) each test
was performed. Whereas failure in sound samples is typically due to newly formed shear bands
or axial splitting cracks, in these jointed samples failure occurs due to irregular cracking following

90



partially newly formed shear bands and partially pre-existing joints. Sometimes shear bands cross
pre-existing joints, whilst other times these joints arrest the growing of these shear bands. These
phenomena are illustrated in Fig. 6.4.b, where a shear band crosses piece ‘e’ of the sample and
then piece ‘h’ but it is arrested in the joint between this piece and pieces ‘k’ and ‘I’.

Fig. 6.4. Picture of the 2+3 jointed specimen JBM11 a) before, and b) and c) after testing; b) inside the
sleeve; c) once the pieces of broken rock have been removed from the sleeve. Original and broken pieces
have been lettered and the observed macroscopic failure trace surface has been marked in red.

A relevant and consistent (reasonably constant) decrease in strength is observed from sound
samples to (1+2) jointed and even more (2+3) jointed samples (Fig. 6.5). This decrease is
attributable to the fact that observed failure surface partially follows pre-existing joints as well as
newly formed shear bands and/or axial splitting cracks. A painstaking observation of broken
samples showed that, in most cases central pieces (i.e. pieces d, e, f, g, h and i as identified in Fig.
6.2.c and d and in Fig. 6.4) are very damaged, while top and bottom pieces usually look pretty
sound or at least not so damaged (Fig. 6.4.c).

Fig. 6.5 shows complete stress-strain curves for the three types of samples in the case of tests
confined at 10 MPa. Clear trends can be observed in this graph, which are quite representative of
general results obtained. This figure illustrates a clear strength and stiffness decrease when
analyzing sound, jointed and even more jointed samples. Additionally, the stress drop after peak
tends to be milder for more jointed samples, but the residual strength shows to be sensibly equal
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in all cases. On the other hand, volumetric strain is not as large in the jointed specimens as it is in
sound samples, which clearly indicates an expected decrease in dilation associated to the
possibility of finding failure paths partially following pre-existing planar joints. A more detailed
interpretation of these results based on actual numeric data is presented in the next section.

Since a number of researchers are in the process of investigating rock mass behavior by means
of advanced numerical techniques (Martin et al., 2014; Mas Ivars et al., 2011; Zhou et al., 2014),
the main parameters derived from our results are presented in Table B.8 in Appendix B. This can
be used as a database to further study the behavior of these small-scale rock mass analogues.

Complete stress - strain curve for fresh, (1+2) and (2+3)
jointed specimens (o; = 10 MPa)

——BI3TRX ——BMDI§ ——IBMII
300 v ~
<
ol
2% {2
L)
001 1
1
-30&; (0.1%) -20 -10 s 0 10 20 g, (0.1%) 30
0 '% T 1

20 £, (0.1%) 3

\. V,
Intact 1+2 joints  2+3 joints _3g A

&,(0.1%)

Fig. 6.5. Example of complete stress-strain curves with unloading-reloading cycles of three of these
specimens representative of each type (fresh —BI13TRX — blue; (1+2) joints - BMDI18 — red; and (2+3)
joints — JBM11 - green) confined to 10 MPa. In the lower right graph together with actual volumetric-

axial strain response, the irrecoverable strain locus is delineated in dotted lines.

Fig. 6.6, Fig. 6.7 and Fig. 6.8 show the axial stress-axial strain curves for groups of tests
corresponding to the intact, (1+2) jointed and even more (2+3) jointed cases respectively, for
typically relevant confinement values of 2, 4, 6 10 and 12 MPa. A rough hand draw (averaged
from various tests for each confinement) is shown in the last graph of every figure for comparative
purposes.
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Fig. 6.6. Example of axial stress-axial strain curves with unloading-reloading cycles of triaxial tests in
intact rock submitted to confinement stresses of 2, 4, 6, 10 and 12 MPa and averaged general trends
representative of tests in intact rock.
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BMD2, BMD9 & BMD10 (o; =2 MPa) BMD11, BMD12 & BMD13 (o; =4 MPa)
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Fig. 6.7. Example of axial stress-axial strain curves with unloading-reloading cycles of triaxial tests in
(1+2) artificially jointed rock specimens submitted to confinement stresses of 2, 4, 6, 10 and 12 MPa and
averaged general trends representative of tests in (1+2) artificially jointed rock.
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Fig. 6.8. Example of axial stress-axial strain curves with unloading-reloading cycles of triaxial tests in
(2+3) artificially jointed rock specimens submitted to confinement stresses of 2, 4, 6, 10 and 12 MPa and
averaged general trends representative of tests in (2+3) artificially jointed rock.



Remark the repeatability of tests in terms of elastic modulus, peak and residual strength and
dropping trends of the curves after peak, which seems rather regular for rock mechanics standards.
See that however, occasionally tests response may vary significantly as it is the case of test at 2
MPa and 12 MPa in (1+2) jointed samples (Fig. 6.7) and tests at 6, 10 and 12 MPa in (2+3) jointed
samples (Fig. 6.8). On the other hand, whereas for some tests, recorded parameters are quite
regular (see residual strength in tests at 4 MPa in Fig. 6.6 or at 6 MPa in Fig. 6.7), in other cases
certain scattering is recorded (see residual strength in tests at 10 MPa in Fig. 6.6 and in Fig. 6.7).

It is interesting to note how the classic initial concave curvature of the axial stress-axial strain
curves is more significant in the fissured samples, particularly in the unloading-reloading cycles.
It seems logical that this phenomenon, traditionally attributed to the closure of micro-cracks, was
more relevant when more joints that are sub-horizontal exist in the tested sample.

The Blanco Mera granite is a brittle rock so in unconfined tests on intact rock it was difficult
to control the failure of the samples and achieve a stable transition from peak to residual strength,
as it happened with more confined cases and jointed samples. This suggests that the hydraulic
press velocity could influence the rate of strength loss observed in unconfined tests. Although the
stress-strain relationships during the strength loss portion of the tests may not be considered
reliable for this rock type, the axial-radial-volumetric strains relationships should still be
representative. After the period of strength loss, and once the press could control stable unloading-
reloading cycles, the stress-strain relationships shown are, again, representative.

6.4. Interpretation of results

In this section, results of (2+3) jointed samples are analyzed together with those of the intact
and (1+2) jointed specimens presented in previous chapters and published elsewhere (Arzia &
Alejano, 2013; Arzua et al., 2014). As depicted in Fig. 6.5, such an interpretation can be of help
to further insight rock and rock mass behavior. The analysis focuses on elastic parameters, peak
and residual strength and dilatancy. Finally a brief comment is given on post-peak strain response.

6.4.1. Elastic parameters

Apparent tangent and secant elastic Young’s moduli (Brady & Brown, 2006) and apparent
Poisson’s ratio have been computed for each test. Tangent elastic Young’s modulus is estimated
as the slope of the axial stress-axial strain curve between the 30% and 60% of the maximum
strength as suggested by the ISRM (2007). Secant elastic Young’s modulus is computed as the
relation between peak axial stress and the corresponding axial strain. Apparent Poisson’s ratio has
been estimated starting from the slope of the axial stress-radial strain curve between the 20% and
40% of the maximum strength and the corresponding apparent tangent elastic Young’s modulus
(Fig. 6.3 and Fig. 6.9). It should be noted that jointed samples were not tested under unconfined
conditions due to problems in initial stressing on the samples, so UCS results for intact samples
are not computed in the presented results, even if available in Table B.8.

The apparent elastic Young’s moduli have been plotted against the confining pressure (Fig.
6.9) and dependence on the confining stress as well as on the structure becomes evident. A
logarithmic fit has been added to each group of results —intact, (1+2) jointed and (2+3) jointed
specimens— although such a fit cannot be valid for null confinements. A straight line is added in
order to estimate more reliably the Young’s modulus for the unconfined tests. Estimates of tangent
and secant elastic moduli derived from logarithmic and linear fits are presented in Table 6.1.

To remark is the relevant impact of confinement on elastic moduli. This confinement
dependency of the elastic modulus has been put forward by different authors, in the lab (Heap &
Faulkner, 2008) as well as when analyzing particular stability problems (Santarelli et al., 1986)
or when trying to fit extensometer elastic data to modelling approaches in mines (Walton &
Diederichs, 2015b). Moreover, this effect may lie behind some inaccuracies often observed in
results of standard numerical models of excavations.
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It is well known the dependence of the elastic modulus of jointed rock mass on its geotechnical
quality (Serafim & Pereira, 1983), for instance, and to use the last relevant reference, the
following formula by Hoek & Diederichs (2006):

1-Dg

_ 2

Erm (MPa) = Ei 0.02 + w (61)
I+e "

where E,, refers to the rock mass’ elastic modulus, E; that of the intact rock, D refers to the
disturbance factor (considered 0 in our case) and GSI is the geological strength index.
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Fig. 6.9. Graphical representation of the apparent a) tangent (or average) and b) secant elastic Young's
moduli.
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Table 6.1. Tangent and secant elastic moduli for unconfined and various confinement levels as derived
from fittings to test data.

Elastic Young's moduli (GPa)

Tangent Secant
Test Intact (1+2) (2+3) Intact (1+2) (2+3)
Approach condition rock jointed  jointed rock jointed  jointed
Linear Unconfined  34.31 11.50 9.09 24.52 7.52 6.70
1 MPa 38.73 11.94 8.37 27.13 8.01 6.15

2 MPa 40.71 15.18 11.01 28.93 10.50 8.11
4 MPa 42.68 18.42 13.65 30.72 12.99 10.08
Logarithmic 6 MPa 43.83 20.32 15.20 31.78 14.45 11.22
10 MPa 45.29 22.71 17.14 33.10 16.29 12.67
12 MPa 45.81 23.56 17.84 33.57 16.95 13.19
15 MPa 46.44 24.60 18.69 34.15 17.75 13.82

Introducing the Young’s modulus of the jointed samples as £, and that of the intact samples
as E; (as in Table 6.1) in eq. (6.1) and for different confinements, one can obtain GSI values. The
obtained GSI values are in the range of 50 to 60 (average 56) for the (1+2) jointed samples and
45 to 55 (average 50) for the (2+3) jointed samples, both and similarly for tangent and secant
Young’s moduli.

The apparent Poisson’s ratio (Fig. 6.10), unlike elastic modulus, seems to be rather constant
for variable confining stress in tests on intact specimens. However, when jointed samples are
considered, the apparent Poisson’s ratios present more variability in slightly confined tests and
less variability for confined tests in the range 6-12 MPa. Average Poisson ratios are moreover
higher for more jointed samples in slightly confined tests. However, they tend to converge
towards a lower value (around 0.15) for every type of samples in the confined cases in the range
of 10 to 12 MPa.
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Fig. 6.10. Graphical representation of Poisson’s ratios vs. confining pressure.
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0.4.1. Peak strength parameters

Peak strength has been collected for each test (Table B.8), as the highest axial stress admitted
by the sample. Since unconfined tests were not carried out in jointed samples, UCS tests in intact
rock have not been considered in this analysis to make the original data on different jointing levels
comparable.

In the case of the (2 + 3) jointed specimens, two different discontinuities’ relative orientations
were prepared (Fig. 6.2.c and Fig. 6.2.d) to check whether this feature has any influence on the
results or not. A plot of the peak strength results in oy - o3 axes (Fig. 6.11), reveals that even if a
slightly higher value of strength of the angular patterned samples (Fig. 6.2.d) is reflected in the
trends; for these relatively low confining pressures, peak strengths do not differ significantly.
Since it is not possible to clearly discriminate results of the relative orientation of the joints, all
the peak strength data coming from these more jointed samples are dealt uniformly. In the

following sub-sections strength data are analyzed in terms of the two most used failure criteria:
Mohr-Coulomb and Hoek-Brown.

Peak strength on (2+3) jointed specimens Fig. 6.2.c) Fig, 6.2.d)
% (2+3) jointed specimens - Regular pattern (Fig. 6.2.¢) svjl svj2 )] 5‘["1'2
+(2+3) joinled specimens - Angular patlern (Fig, 6.2.d)
200 ;
shjl =
= ;
S 150 - shi2
= % L L
e + $ shj3 ~
= 100 1
) X %
g ¥ X T
% X
‘?E 50 4 x X
£ D D
0 + + t + + !
0 2 4 i) 8 10 12

Confining stress - o, (MPa)

Fig. 6.11. Peak strength of the 2+3 jointed specimens depending on the relative orientation of the joints.

0.4.1.1. Interpretation of peak strength data in terms of Mohr-Coulomb failure criterion

The Mohr-Coulomb criterion can be fit in various ways and two approaches have been
followed in this chapter. First, line has been fit in p-q space, where p = (o7 + 03)/2 and
q = (o1 — 03)/2. As shown in Fig. 6.12, once one of these lines ¢ = p - tana + b has been fit to a

number of tests, it can be easily demonstrated that the friction angle, ¢, and cohesion, ¢, can be
readily computed from:

¢ =arcsina
oo b (6.2)
cos¢

This approach, traditionally used before the coming of the Hoek-Brown approaches, tends to
offer more accurate fits than other approaches.
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Derivation of ¢ and ¢ from p-q line
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Fig. 6.12. Representation of maximum shear strength line (blue) in p-q axes, Mohr-Coulomb line (red) in
-0, axes and their correlation.

It is also possible to fit a line to results in 0;-03 axes (Hoek-Brown axes) in such a way that:
o,=0,+K,0,
1+sing (6.3)
1—-sing
Both these approaches permit the use of linear regression analysis, which makes easier to
handle and understand data.

Mohr-Coulomb failure peak criterion fitted relatively well to the results of all types of tests.
Fig. 6.13.a shows the results of peak strength fits for intact, (1+2) jointed and (2+3) jointed
samples in p-q axes for all analyzed tests. The derived parameters are presented in Table 6.2.

Where o, =2-¢/K, and K, =

Good fits are observed with regression coefficients over R“=0.99 in all cases. A noteworthy
decrease in peak strength is observed when increasing jointing, although the slope of the fits
remains similar. This suggests that the loss in strength mainly occurs in the cohesive component.
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Fig. 6.13. Peak strength tests results and Mohr-Coulomb failure criterion fit for intact, (1+2) and (2+3)
Jjointed specimens in terms of a) p-q line and b) results in o;-03 axes.

Mohr-Coulomb failure peak criterion fits not so well in 0;-03 axes with regression coefficients
in the range of R? from 0.83 to 0.92. In general, this approach presented in Fig. 6.13.b seems to
be not as accurate as the classic one and it produces higher values of cohesion and lower friction

angles than the previous fit approach.



It is also relevant to note that the statistical significance of the fitting of intact rock data
(particularly high due to homogeneity of the samples) is not much higher than that of the jointed
data samples. This suggests that it should be possible to develop a method able to predict strength
in a reasonably accurate way, based on rock properties and the structure introduced in the sample.

Table 6.2. Mohr-Coulomb peak failure criterion parameters derived from two fit approaches.

Intact (142) jointed (2+3) jointed
specimens specimens specimens

tan a* 0.8717 0.864 0.825

& b* 8.1475 3.6503 3.1566
g Based on p-g 4C) 60.6 59.78 55.58
£ _ representation ¢ (MPa) 16.63 7.25 5.58
2% ot (MPa) 127.01 53.72 36.06
E & R’ 0.9983 0.998 0.993
el o (MPa)* 132.88 59.65 46.17
:% = Based on Ky* 13.434 12.603 9.00
L 61-03 6 ) 59.48 58.54 52.89
= representation ¢ (MPa) 18.13 8.40 7.74

R’ 0.9154 0.9127 0.8372

* Fitted parameters, being the other ones derived values.

0.4.1.2. Interpretation of peak strength data in terms of Hoek-Brown failure criterion

Hoek-Brown failure criterion in its simpler form (¢ = 0.5, s = 1) is intended to be applied to
intact specimens. It is possible to fit a line to results in (o7-03)*-03 axes in such a way that:

(al -0, )2 =mo,0, + O'CZ (6.4)

So the slope of the fitted line will be m- ot and the intercept will be o 2.

Fig. 6.14.a shows the results of peak strength fits for intact, (1+2) jointed and (2+3) jointed
samples in (0;-03)*- 03 axes for all analyzed tests. Numerical results are shown in Table 6.3.

Whereas fitting a simple H-B criterion to intact rock strength results, one obtains
0. = 126.2 MPa and m = 40.01 with R’ = 0.934; for the (1+2) jointed samples, one obtains
0. = 42.93 MPa and m = 67.98 with R’ = 0.893; and for the (2+3) jointed samples one gets
0. =10.04 MPa and m = 162.9 with R? = 0.702. Therefore, the fit of H-B for jointed specimens
is not appropriate, since it does not only produce low values of the coefficient of regression but
also values of m out of the standard range. That is, the H-B criterion for intact rock is not suitable
for jointed specimens, as otherwise expectable.

So, in order to estimate jointed sample strength, it seems more reasonable to consider the
jointed specimens as small-scale rock masses and assign them an equivalent Geological Strength
Index (GSI) that will allow using the generalized Hoek-Brown failure criterion. The generalized
Hoek-Brown criterion for rock masses is expressed as (Hoek et al., 2002):

O

ci

0-3
o,=0,+t0,| m—+s (6.5)
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where:

(GSI—IOO)
m, =mexp| ———

28-14D
GSI -100
§=exp| ———— (6.6)
=2
a= l_,_l(e*GSl/lS _6—20/3)
2 6

and where D is the disturbance factor; m; is a reduced value of the material constant, m (estimated
in 40.01 in our case); and s and « are constants for the rock mass given by the presented
relationships. o; refers to the uniaxial compressive strength of the intact rock; o, as tested in the
lab, estimated in 126.2 MPa in our case.
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Fig. 6.14. Peak strength tests results and Hoek-Brown failure criterion fit for intact, (1+2) and (2+3)
Jjointed specimens in terms of a) (01-03)° - 03 axes and b) results in o;-03 axes.

This generalized Hoek-Brown failure criterion has been fit to the peak strength results of the
jointed specimens by means of curve fitting toolbox™ (Mathworks Inc., 2006). Within this
software, the non-linear least squares approach with coefficient fitting carried out with the so-
called trust-region algorithm was used. This approach does not only provide the coefficient of the
regression, R’, but also the root mean square error, RMSE, quite convenient to compare
forecasting errors of different fittings. For a fixed disturbance factor (D = 0), values of GSI of 83
and 67 have been obtained for (1+2) and (2+3) jointed specimens respectively with regression
coefficients as presented in Table 6.3 and illustrated in Fig. 6.14.b. However, if curves are fit with
the same approach letting the algorithm to optimize the values of my, s and a independently it
seems that the Hoek-Brown generalized failure criterion does not exactly fit these results, even if
the increase of accurateness proportioned by this approach is not so relevant (see values of R? and
RMSE in Table 6.3) in relation with the increase of complexity introduced.

Based on the comment by Martin et al. (2014) and in the classic figure by Hoek & Brown
(1980a), let us now consider a reduction of strength in rock associated to scale up to a 70 %. In
this way if the strength of all of the tests in fissured samples is reduced to a 70% of the recorded
value (simulating large scale) and the second approach is repeated to derive the equivalent GSI of
the jointed samples, the results presented in Table 6.4 are obtained. These values are more similar
to those derived from elastic estimates of GSI.



Table 6.3. Hoek-Brown failure criterion parameters derived from various fit approaches for peak

strength.
Intact (1+2) jointed  (2+3) jointed
specimens  specimens specimens
Intact rock m * 40.01 67.98 162.94
et e o: (MPa)* 126.22 42.93 10.03
(s=1, a=0.5)
’ R’ 0.9337 0.8928 0.702
. (MPa) 126.22 126.22 126.22
LEZ m; 40.01 40.01 40.01
gz < D 0 0 0
s 2g:3 . ¢ 0 0
£ =238 GSI 100 82.87 66.96
2 REZEY®  mifromGSI(eq. 6.6) 40.01 21.70 12.29
o EZ6E  afromGSI(eq. 6.6) 0.5 0.5004 0.5017
3 £ 2 § s from GSI (eq. 6.6) 1 0.149 0.0254
E OF& R’ 0.9337 0.9319 0.8118
= RMSE 16.35 14.78 17.41
= - ovi (MPa) 126.22 126.22
= S
> S m; 40.01 40.01
i EE% D 0 0
o IR my (eq. 6.5)* 23.41 10.12
2 g § 3 a (eq. 6.5)* 0.5 0.67
T s (eq. 6.5)* 0.0916 0.1847
fEE GSI from mj (eq. 6.6) 84,99 61.5
s 2E GSI from a (eq. 6.6) 100 0
2B GSI from s (eq. 6.6) 78.49 84.79
O 2 R’ 0.9371 0.8279
- RMSE 14.55 17.1

* Fitted parameters. Underlined means fixed parameters. Bold means obtained during the fit. Being

the other ones derived.

Table 6.4. Hoek-Brown failure criterion GSI and parameters derived from fitting the strength results
obtained in jointed samples reduced to a 70 %.

(1+2) jointed  (2+3) jointed

specimens specimens
% 55 o (MPa) 126.22 126.22
8o B m; 40.01 40.01
S8 2 D 0 0
S8 - -
Ao E S GSI* 65.32 50.44
1 g—g 3]
% = ; my from GSI (eq. 5) 11.59 6.81
E 5; S 7 a from GSI (eq. 5) 0.5019 0.5055
= g g - s from GSI (eq. 5) 0.0212 0.00405

3}

2 55 R 0.9307 0.8044
SR RMSE 10.43 13.31

* Fitted parameters. Underlined means fixed parameters. Bold means obtained during the fit. Being

the other ones derived.
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0.4.2. Residual strength parameters

Some researchers consider that residual strength strongly depends on inhomogeneous
deformation modes (bifurcation and localization modes) highly controlled by boundary
conditions so it is not rigorous to compute it. However, other authors have checked that this
residual strength can be relevant in practice and it seems to tend to a particular value (Cai et al.,
2007). Based on the repeatability of the tests and on the fact that some relevant information can
be derived, residual strength are estimated and analyzed. The authors recognize, however, that
different interpretations of these results can be proposed.

Residual strength has been estimated for each test, although the selection is not as straight
forward as it is in the case of peak strength. The residual strength has been estimated as the value
of strength for an axial strain of 30 milistrain (typical end-point of the tests), when an increase in
the last 5 mstr. of axial strain has not produced a significant decrease in strength (5 MPa). If this
does happen, an estimation of the possible value is performed based on the main trend of the
considered test. If still this latter method does not give a reasonable value, no valid residual
strength is computed for the test. Obviously, these results cannot be considered as accurate as
peak strength.

On the other hand, all residual strength results in the different types of jointed and unjointed
samples tend to coincide. Moreover, both types of jointed specimens seem to slightly increase its
residual strength with confining stress when compared to intact specimens, which could be
attributed to the fact that macroscopic failure trace surfaces combining existing joints and new
shear bands appear in the jointed samples (Fig. 6.4.b), while more simple shear bands occur in
the case of intact samples.

0.4.2.1. Interpretation of residual strength data in terms of Mohr-Coulomb failure

criterion

Mohr-Coulomb failure criterion fitted relatively well to the residual strength results of all types
of tests. Fig. 6.15.a and Fig. 6.15.b show the results of residual fits for both types of fitting
approaches previously presented for intact, (1+2) jointed and (2+3) jointed samples and for all
the samples together in p-q axes and o;-03 axes for all analyzed tests. The derived parameters are
shown in Table 6.5.

Good fits are observed with regression coefficients over R* = 0.99 in all cases for the p-q
approach and over 0.8 for the 0;-03 linear fit approach. Quite constant values of the friction angle
are obtained in all cases. In general, the failure criteria are very similar for all types of tests, which
suggest a similar residual strength behavior.

a) Mohr-Coulomb fit (p-q line) b) Mohr-Coulomb fit (;-a3)
ol 150
=) ¥ =0.7998x + 0.7182 ¥=7.5244x + 15.794
,l\ R2= {9893 b~ R2= 08191
£ 1 y=omons+ 141601 D 1251 y=8.5589x + 16859 4 4 Intact
é R? =(.9968 E R?*=1.9393 A 142 jointed
o 40 4 y=0.7874x +1.5432 100 1 e
E R?=0.9985 :E:/ A 2+3 jointed
5] = .
PEIR g) 75 4 All data
% B ——Linear (Intact)
,E 20 A ‘E—L: 50 4 —Linear (1+2 jointed)
&
5 =
5 10 4 y=Upnoes 1 0o & 25 y = 7.9415x + 16.155 LS S a1 ATEE)
';c\_; R*=0.9932 o~ R =0.8806 —Linear (All data)
B
0 e e 0+ t t } t : . i
0 20 40 60 80 0 2 4 6 8 w 12 14
Center of Mohr's circle (MPa) - p Confining stress (MPa) - o

Fig. 6.15. Residual strength tests results and Mohr-Coulomb failure criterion fit for intact, (1+2) and
(2+3) jointed specimens and all tests together in terms of a) p-q line and b) results in o;-03 axes.
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Table 6.5. Mohr-Coulomb residual failure criterion parameters derived from two fit approaches.

Intact (14+2) jointed ~ (2+3) jointed All
specimens specimens Specimens SpeCimenS
tan a* 0.7998 0.8011 0.7874 0.7979
S v§ b * 0.718 1.416 1.543 1.069
- g () 53.11 53.23 51.94 52.93
§ = T8 ¢ (MPa) 1.19 2.36 2.50 1.77
E g 25 gk (MPa) 7.17 14.23 14.52 10.58
EZ R? 0.9893 0.9968 0.9985 0.9932
E 2 g Ol (MPa 15.79 16.86 15.7 16.15
g SR Ky 7.52 8.56 8.22 7.94
5 E g () 49.94 52.26 51.55 50.92
S Z 5 ¢ (MPa) 2.88 2.88 2.73 2.86
ol R 0.8191 0.9393 0.9751 0.8806

* Fitted parameters, being the other ones derived values.
0.4.2.2. Interpretation of residual strength data in terms of Hoek-Brown failure criterion

For the case of the residual strength fitting of Hoek-Brown failure criterion, the same fitting
approach based on fitting GSI by means of the MatLab tool (Mathworks Inc., 2006) was used,
but thinking that due to the damaged nature of rock pieces, a not null disturbance factor could be
obtained. Fitting in this way the generalized Hoek-brown criterion, a value of D practically null
was obtained in all cases and it was possible to obtain a mean equivalent GSI for each case (intact
and two types of jointed specimens and all together residual strength). The obtained parameters
are presented in Table 6.6 and the graphical results are shown in Fig. 6.16.a.

Table 6.6. Hoek-Brown failure residual criterion parameters derived from fit approaches of GSI and D.

Intact (142) jointed  (2+3) jointed All
specimens  specimens specimens specimens
. o (MPa) 126.22 126.22 126.22 126.22
s = 3 m 40.01 40.01 40.01 40.01
g E - D* 0 0 0 0
—é ‘§ 3 GST* 41.62 48.13 45.66 44.32
5 §0 g myp from GSI (eq. 6.6) 4.97 6.28 5.75 5.48
ﬁ § h—; a from GSI (eq. 6.6) 0.5102 0.5065 0.5077 0.5085
g :g §i s from GSI (eq. 6.6) 0.00152 0.00314 0.00239 0.00206
3 2 R’ 0.7984 0.9192 0.9346 0.8566
g ° RMSE 15.88 10.77 8.86 13.48

* Fitted parameters. Underlined means fixed parameters. Bold means obtained during the fit. Being the
other ones derived. The obtained value of D is not strictly zero but in the range of 1e-6.

The residual strength points for all the tests present, more or less, the same values in terms of
compressive strength or equivalent GSI. This contributes to evidence that the residual strength of
a rock does not show a relevant structure effect (probably also not scale effect). Similar
observations have already been made by Exadaktylos & Tsoutrelis (1993) and Cai et al. (2007),
who stated that the residual strength of intact rocks, as interpreted from triaxial tests, could be at
the same level as the residual strength of the jointed rock mass.



A deeper analysis of the residual strength data shows that the obtained equivalent GSI for the
jointed specimens increases with the confining pressure, meanwhile it remains more or less
constant for the intact specimens (Fig. 6.16.b). This result is in line with the observations of
Bahrani & Kaiser (2013), who indicated that in a jointed rock mass the generalized Hoek-Brown
failure criterion tend to systematically underestimate the strength of the rock mass at high levels
of confinement, when assuming a constant value of GSI.

a) Hoek-Brown fit o, - o3 b) Residual equivalent GS1 vs. o;
150 1~ 60
A Intact
<) 55
,'.._ A 142 jointed X Tnlact specimens
& 50
= A 243 jointed @ X 142 jointed specimens
= = 45
:i_? » All data = " X 2+3 jointed specimens
g % 40
2 —@Gen. H-B GSI fit Intact & X ——Linear (Intact
E; = ¥ =0.0389x +38.76 specimens)
= i 35 R? - 0.0078 g -
- —¢en. H-B GIS fit [+2 2 =inear (1+2 jointed
ﬁ jointed 30 = 8 % 7 specimens)
—Gen. 11-B GSL fir 2+3 E ; =L incar (2+3 jointed
0 jointed specimens)
' ' ' ! ' ' ! —Con LR 25; t + + t + t
0 2 4 6 8% 10 12 14 f;;é 11-B GSL fit All o 2 4 6 s 10 12 14
Confining stress (MPa) - o Confining stress (MPa) o

Fig. 6.16. a) Residual strength tests results and generalized Hoek-Brown failure criterion fit for intact,
(1+2) and (2+3) jointed specimens. b) Residual strength GSI equivalent results for intact, (1+2) and
(2+3) jointed specimens, suggesting a more relevant confinement effect in jointed samples.

6.4.3. Drop modulus

In previous chapters, the author have tried to compute the drop modulus of every test as the
main trend of the slope of the axial stress-axial strain curve between peak and residual strength.
This has revealed to be a difficult task and some data has been recorded which did not seem to
follow clear trends. This is attributed to insufficient servo-control of the press system —
particularly when testing brittle rocks under slightly confined conditions— to the limited range
of confinement stresses and to variable response of rock samples (see, for instance, how in the
tests with a confinement of 6 MPa in Fig. 6.7, whereas some tests present a pretty curved surface,
other one shows a quite sudden drop).

However, drop modulus has been estimated in all confined tests in the following manner. First,
the peak strength of each test was selected with its correspondent value of axial strain. Then, the
residual strength is estimated. Later, the principal stress level corresponding to 50% of the drop
is selected, that is the average value of peak and residual estimated strengths, and its
corresponding axial strain value is computed as derived from the envelope of the curve. The
average slope of the line joining the stress-strain peak and intermediate point is taken as the
estimated drop modulus. This value appears in Table B.8 for all tests. This is a rough estimate
and not a computed value. Because of this and because the inaccuracies produced by the above
indicated reasons, results should be interpreted in a cautious manner.

Drop moduli estimates of intact samples showed to be rather erratic. However, those
corresponding to jointed samples seem to follow clear trends. In particular the parameter called

 has been represented, which is the negative ratio of the drop modulus versus the secant elastic
modulus (Alejano et al., 2010):

0=—" (6.7)
secant
This is also a measure of the brittle response of the tests. Tests showing large @ values (over 2)

are typically very brittle whereas when they show low @ values (less than 0.5) they are rather
ductile.
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Alejano et al. (2010), provide an estimate of this value derived from general observation in
rock masses with the following form:

-1
=[0.0046e"780 || T (6.8)
[ ’ ] ( W'Gci J

In Fig. 6.17.a the values of @ for the (1+2) and (2+3) jointed samples are presented in relation
to confining stresses. It can be observed how more fissured samples tend to be less brittle,
particularly for higher confinement (4-12 MPa), in line with general trends proposed by Hoek &
Brown (1997). It can also be observed a more marked trend towards lower brittleness for more
confined tests, as typically observed in lab tests (Von Karman, 1911; Zhang et al., 2013).

The author has tried to identify trends in more detail, which have proved difficult. But
representing the points (w,03) for the (2+3) jointed samples corresponding to the more
perpendicular joint pattern (Fig. 6.2.¢), these values match reasonably well the results derived
from the application of eq. (6.8) considering a GSI = 40, as Fig. 6.17.b. illustrates. Remark that
other obtained data do not seem to fit this tentative formulation.

A 1+2 jointed specimens A 2+3 jointed specimens b < 243 jointed specimens, regular pattern (Fig. 6.2.c)
a) ) _GSI= 40, eq. (6.8)
2.5 2.5
2 1AA 2 Q
3 4 1l
B LS 44 ar1s
= A - o
= 1+ A4 A A = | \
I A A R 2 a o
%0 A i s 4 o5 ]
: o 2 2 0 >
A A . ¢
0 t t f t | 0 t t f t f |
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Confining stress (MPa) - o; Confining stress (MPa) - &,

Fig. 6.17. Estimated drop modulus indicator results, o, for the case of jointed samples b) @ values for
(2+3) artificially jointed samples with normal pattern (Fig. 6.2.c) and representation of eq. 8 for the case
of GSI 40.

6.4.4. Dilation angle

Due to the ability of the servo-controlled press set-up to monitor volumetric strain and perform
unloading-reloading cycles, the irrecoverable strain locus can be obtained for every test as
suggested by Medhurst & Brown (1998). From these irrecoverable strain loci, dilation angle was
computed for a number of plastic strains and for each test, as presented in previous chapters.
Results show the already known dependencies of the dilation angle (i.e. plastic strain and
confinement, as pointed out by Alejano & Alonso, 2005) but also on the structure. As the level of
jointing increases, the dilation angle decreases, but when increasing confining pressure, the
differences in the dilation angle between intact and jointed specimens become smaller and even
seem to present the same dilation angle for a low confining pressure of around 4 to 6 MPa (Fig.
6.19 and Fig. 6.21).

The dilation angle data was fitted to the available dilation angle models: Alejano & Alonso
(2005), Zhao & Cai (2010a) and Walton & Diederichs (2015a).

Alejano & Alonso (2005) model was not able to capture the peak dilation angle, although the
decay with plastic strain was quite well represented. Zhao & Cai (2010a) and Walton &
Diederichs (2015a) models were able to capture the whole dilatational behavior of granite,
although some concerns arose during the analysis.
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0.4.4.1. Zhao & Cai (2010a) dilation angle model

Zhao & Cai (2010a) dilation model is based in nine coefficients (a;, az, as, b1, bz, b3, c1, c2 and
¢3) and is able to capture the peak dilation angle (its value, its associated plastic strain and its
dependence with confinement) as well as the decay of the dilation angle with the plastic strain.
On the other hand, the coefficients used in the model have no physical significance since they are
merely coefficients of an equation that fits quite well the observed behavior of the dilation angle,
this makes the model difficult to examine or to modify its parameters in the context of other
geomechanical parameters. Another problem is that the solution is not univocal because although
each parameter (a, b and ¢, derived from the nine coefficients) mainly affects one aspect of the
model, they also affect, in different degrees, the other aspects of the model, resulting in that two
sets of coefficients can practically yield the same dilation angle curve.

As proposed in chapter 5 (Arzua et al., 2014), the coefficients of the Zhao & Cai (2010a)
dilation model that represent the decay of the dilation angle with plasticity (i.e. b;, b, b3, ci, ¢
and c3) have been set equal to those of the intact specimens due to the similarity in dilation decay
trends. This consideration makes the fitting process easier and provides very good results as it can
be observed in Fig. 6.19. Also considering coefficients a; and a3 for (2+3) jointed specimens equal
to those of the (1+2) jointed specimens, provided very good fits, so eight out of nine (i.e. az, a3,
b1, bs, b3, c1, ¢2 and c¢;3) coefficients defining the Zhao & Cai (2010) dilation model of the (2+3)
jointed specimens have been set equal to those of the (1+2) jointed specimens.

The coefficients that define the plastic shear strain and confining pressure dependent
dilatational behavior of the three types of specimens as proposed by Zhao & Cai (2010a) are
shown in Table 6.7. Derived from these coefficients one can obtain the confining stress dependent
parameters (a, b and ¢) for each confinement as proposed by Zhao & Cai, and compare them with
those obtained during the fit of the actual data to check if they really agree with the equations
proposed by Zhao & Cai. This comparison is shown in Fig. 6.18, where it can be observed the
good agreement between the obtained parameters during the fits and those obtained from the
coefficients and equations proposed by Zhao & Cai (2010a).

Variations in fitting parameters (a, b and c¢) for intact specimens

60 60 0.30
a 3 b I
50 - 50 0.25
40 1 40 0.20
30 A 30 0.15
20 A 20 0.10
10 1 10 0.05
0 T T ! 0+ T T v 0.00 4 T T ]
0 5 10 13 0 5 10 15 0 5 10 15
o; (MPa) o3 (MPa) o; (MPa)
Variations in fitting parameter (a) Variations in fitting parameter (a)
for 142 jointed specimens for 2+3 jointed specimens
60 60 1
a a
50 1 50 A
40 1 X Parameter obtained 4
30 4 during fit 30 _K‘N
20 4 —Parameter obtained ¢
from the coefficients
10 10 4
0 T . . 0 r T \
0 5 10 15 0 5 10 15
o; (MPa) o; (MPa)

Fig. 6.18. Variations in fitting parameters (a, b and c) at different confining pressures and the best fit for
each type of specimen. The parameters b and c of the jointed specimens (1+2 and 2+3) are the same than
those of the intact specimens.
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Table 6.7. Coefficients of the plastic shear strain and confining pressure dependent dilation angle model
as proposed by Zhao & Cai (2010a) for the three types of specimens tested.

* a ar as b; b bs Ci C2 C3
21.13 36.71 4.92

2 21.13 20.63 2944 297 0.047 0.049 0.589

3 16.13 17.92 9.85

*1. Intact specimens, 2. 1+2 jointed specimens, 3. 2+3 jointed specimens
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Fig. 6.19. Zhao & Cai (2010a) dilatancy model fits for different confining pressures and for the three
types of specimens (intact, (1+2) joints and (2+3) joints). Please note the different vertical scale.
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With the coefficients presented in Table 6.7, one can obtain the fit for the dilation data obtained
in the lab as presented in Fig. 6.19. In this Fig. 6.19 it is represented the data as obtained from the
lab for the intact (blue crosses), (1+2) (red crosses) and (2+3) (green crosses) jointed specimens
as well as the Zhao & Cai (2010a) model for the intact (blue lines), (1+2) (red lines) and (2+3)
(green lines) jointed specimens. At first sight, the dependencies of the dilation angle become
evident: First, the dilation angle depends on the plastic shear strain: as the plastic shear strain
increases, the dilation angle decreases; secondly, the dilation angle depends on confining stress:
as the confinement increases, the dilation angle decreases; and finally, the dilation angle depends
on the level of jointing: as the jointing increases, the dilation angle decreases, but this dependence
is also dependent on the confining stress. The difference in the dilation angle between intact and
jointed specimens is relatively high for low confinements, but this difference diminishes as the
confining pressure increases, becoming almost imperceptible for confinements of around 6 MPa.

0.4.4.2. Walton & Diederichs (2015a) dilation angle model

Walton & Diederichs (2015a) have recently proposed a dilation model that requires between
four and seven parameters (ao, &', ym, B, P, 0 and »’) depending on the available data and the
idiosyncrasy of the rock mass, to completely characterize the dilatational behavior.
Mathematically it is based in a piecewise function that separates pre-mobilization of dilatancy,
mobilization of peak dilatancy and post-mobilization of dilatancy. This division allows to
consider each part separately, to perform a detailed study of the influence of each parameter on
the model and to study correlations with other geomechanical parameters.

ap and o’ parameters determine the curvature of the pre-mobilization portion of the model for
unconfined and confined conditions respectively. In this study these parameters have been set to
0.1 and 0.01 respectively as these were the values recommended by the authors as a reasonable
lower bound (Walton & Diederichs, 2015a).

7w parameter defines the plastic shear strain at which peak dilation is achieved. It has been set
to 1 mstr. (0.1%) for this study as recommended by the authors (Walton & Diederichs, 2015a).

The peak dilation angle is forced to be equal to the peak friction angle for unconfined
conditions. This worked fine for the intact specimens, but it did not for the (1+2) and (2+3) jointed
specimens (which could not be tested under unconfined conditions), because the failure under
unconfined conditions will not happen through the rock but following existing discontinuities. So
it is not possible to correctly assign a peak dilation angle based solely on the friction angle of the
rock for unconfined conditions and no laboratory data. For the fit of the model, a reasonable value
for each type of specimen following the observed trends was selected.

Lo and S’ parameters define the dependence of the peak dilation angle with o3 for low and high
confining pressures respectively. The authors (Walton & Diederichs, 2015a) define what are low
and high confining pressures comparing the confinement with an exponential function depending
on S and A’ For intact specimens of the Blanco Mera granite low confinements were those below
2.4 MPa and for the (1+2) and (2+3) jointed specimens the low confining pressures are below
0.001 MPa. Walton & Diederichs suggest values of £ and £’ of 0.97 and 0.054 respectively for
the intact Blanco Mera Granite specimens, but a better fit was obtained using a value of £’ equal
to 0.24, this could better capture the peak dilation angle dependence with confinement, as it can
be observed in Fig. 6.21.

Finally, » and y’ parameters define the decay rate of the dilation angle for unconfined and
confined conditions respectively. The authors suggest a value of y of around 200 for a granite
like the Blanco Mera one, but it became a quite high value and it had to be reduced to 132.74 to
get a correct fit of the unconfined conditions. Moreover, a constant decay rate for the different
confining pressures (i.e. a constant y’) became unrealistic and a quite good logarithmic fit
depending on the confining pressure for this parameter was obtained (Fig. 6.20), a very low
confining pressure (0.001 MPa) was considered as the unconfined condition to get rid of the
problem of the natural logarithm of zero . Unfortunately, since unconfined tests could not be
performed for jointed specimens, the logarithmic fit lacks of data near the unconfined conditions
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and therefore the curvature of the fit shown for these specimens in Fig. 6.20 should be considered
only as an indicative of the trend of this parameter.

The required parameters for this dilation model are presented in Table 6.8., and the results of
applying this model to the different specimens and the different confining pressures are shown in

Fig. 6.21.
Intact specimens 1+2 jointed specimens
150 - 150 -
Yoo y
y =-10.09In(x) + 63.25 y =-14.71In{x) + 69.541
100 R = 0.9947 100 4 2=(.8788
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Fig. 6.20. Variation of the parameter y’ of the Walton & Diederichs (2015a) dilation model with
confining pressure for the three types of specimens tested.

Table 6.8. Parameters of the dilation angle model proposed by Walton & Diederichs (2015a) for the
three types of Blanco Mera granite specimens tested.

Intact specimens s(;Zcziiriglllrslted s(rz);rc?)izrigg;ted
a 0.1 0.1 0.1
a’ 0.01 0.01 0.01
"™ (mstr) 1 1 1
P 0.97 0.7 0.59
yix 0.24 0.04 0.04
70 (mstr) 132.736 132.736 132.736
7’ (mstr) 10.09-In(o3) + 63.25 14.71-In(o3) + 69.541°* 16.63"In(o3) + 77.33*

* fits only given as indicative of the trend due to the lack of data for unconfined tests
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Fig. 6.21. Walton & Diederichs (2015a) dilatancy model fits for different confining pressures and for the
three types of specimens (intact, (1+2) joints and (2+3) joints). Please note the different vertical scale.
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6.4.5. A brief comment about the irrecoverable strain locus

As commented above, the irrecoverable strain locus was obtained for each test due to the
ability of the press to perform unloading-reloading cycles and to measure the amount of hydraulic
fluid displaced outwards or inwards the Hoek’s cell in order to maintain the confining pressure.

The irrecoverable strain locus links the axial and volumetric plastic strains and allows to
compute the dilation angle, as explained in previous chapters. Comparing the irrecoverable strain
loci of two different specimens one can observe which specimen dilates more than the other
without any kind of equation. This fact can be observed in Fig. 6.5 and in Fig. 6.22: (2+3) jointed
specimens (green curve) do not present so much volumetric strain as intact specimens (blue
curve), indicating that the jointed specimen dilate much less than intact one.

Additionally, it has been observed that moving the irrecoverable strain loci of fissured samples
downwards and rightwards in a volumetric strain-axial strain diagram, this irrecoverable strain
loci tend to superpose on the same curve for intact specimens and even for less fractured
specimens, as illustrated in Fig. 6.22. This seems to suggest that in the process of rock fissuring
in the lab or in the process of rock failure in nature to produce a jointed rock mass, an irrecoverable
strain takes place in such a way that when the material is reloaded it retakes the volumetric strain
process, stopped at a particular stage in the past.

This observation is consistent with the already commented (Chapter 5) behavior of axial and
radial strains (this can also be observed in Fig. 6.5): in all cases, the stress-strain response of the
jointed cores tends to approximate that for the intact cores for large strains, it is as if the jointed
cores had already undergone the deformations corresponding to the earlier, steeper part of the
softening portion of the curve.

Axial strain Vs. Volumetric strain (0.1%)
—lIntact (BI3TRX) ~ ——(1+2) jointed (BMD18)  ——(2+3) jointcd (JBM11)
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Fig. 6.22. Volumetric strain vs. axial strain response of three characteristic samples as in Fig. 6.5, where
also the irrecoverable strain locus is delineated in dotted lines. Observe that moving the irrecoverable
strain loci of fissured samples downwards and rightwards, these irrecoverable strain loci tend to
superpose over the locus corresponding to intact rock sample.
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6.5. Discussion

Results of tests on intact and jointed samples have been presented. Empirical based
correlations (Hoek & Diederichs, 2006) of elastic moduli suggest that (1+2) and (2+3) jointed
samples behave elastically similar to rock masses, presenting average values of GSI around 56
and 50 respectively. The application of the Hoek & Brown approach to peak strength results
suggests that jointed and even more jointed samples’ strength would correspond to rock masses
presenting average values of GSI around 82 and 67, respectively. But if strength results are
reduced to 70 % of the recorded values —in order to remove the scale-effect— the GSI value
corresponding to (1+2) jointed samples becomes 65 and that for (2+3) jointed samples 50.
Additionally, post-failure response indicates that the jointed samples behave as rock masses
showing decreasing drop moduli and less dilation. In the case of (2+3) jointed samples a value of
GSI of 40 can be roughly estimated from approaches regarding post-failure response of rock
masses. In conclusion, the response of (2+3) jointed samples may represent a rock mass with
average rock mass quality (GSI=50-40), whereas that of (1+2) jointed samples represent a
somewhat better quality rock mass (55-65).

If we think now in a standard 4 m diameter tunnel excavated in a granitic rock mass showing
a regular pattern of normal discontinuities with fair behavior and presenting an spacing of 0.9 m,
an equivalent GSI of around 60 would be obtained. In the case of a spacing of 0.4 m, the estimated
GSI would be around 50 (Fig. 6.23). If we could test a 1 m diameter and 2 m high sample in both
cases, the presented structure would be homothetic to that presented in our jointed samples, as
circles a, b and ¢ in Fig. 6.1. The stress strain response of these samples would be representative
of the rock mass at the scale of the tunnel. Since the rock structure in these samples would be
homothetic to our samples, the response of our samples should be the same of the rock mass, once
corrected the scale effect. We have corrected the scale effect (by considering 70% of peak
strength) and we have shown that, in a rough way, the response of our samples is similar to that
expectable for the equivalent rock mass.

This suggests that once reduced the scale effect, by considering a 70 % of the computed value
of peak strength for every test in jointed samples, the stress-strain response could be similar to
that expectable in equivalent rock masses at the scale of the engineering work. Therefore, tests in
jointed samples as presented can be of interest to investigate rock mass behavior. Remark that, in
the same way as in rock joints, peak strength seems to be affected by scale but residual strength
does not seem to be (Barton & Bandis, 1982).
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Even if the jointed samples present very regular fracture patterns, and the showed results are
limited, the above indicated approaches suggest that the behavior of rock masses is largely
controlled by their structure, and this structure is associated to the geological stress history of the
rock mass. Therefore, a continuous behavior in terms of the complete stress-strain curve can be
derived as presented in Fig. 6.24. This is in line with Archambault et al. (1993) suggestion on the
fact that patterns of shear and tension discontinuities and the resultant shear strength scale effects
in rocks and rock masses are the end result of a progressive material and mass softening
mechanism associated to progressive shear deformation and failure, and to rotational simple shear
complexity, which takes place at all scales.

In Fig. 6.24, the evolution of axial stress-axial strain behavior for three different levels of
confinement is represented (Fig. 6.24. a). The strength weakening is associated either to the
occurrence of joint in a sample or to that of a joint structure in a rock mass. As far as the rock is
more jointed or the rock mass more fractured, the peak strength diminishes even if residual
strength seems to keep constant (Fig. 6.24.b), the material is more deformable (Fig. 6.24.d), and
the capability of dilating is more limited (Fig. 6.24.c).
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6.6. Conclusions of this chapter

In previous chapters, the author performed lab studies on the effect of the structure in the
strength, deformability and post-failure characteristics of granite at lab scale (Arzua & Alejano,
2013; Arzua et al., 2014). This experimental program included intact and artificially jointed
samples (one sub-vertical and two sub-horizontal joints). In this chapter, the database has been
enlarged with results of tests on even more jointed samples (two sub-vertical and three sub-
horizontal joints). From the complete stress-strain curves, the elastic (tangent and secant Young’s
modulus and Poisson’s ratio), peak (peak strength), and post-peak (residual strength, drop
modulus and dilation trends) parameters have been computed or estimated for each performed
test, the results of all the performed tests on the different granites and specimens are presented in
the Appendix B.

Obtained results permit to observe the changes in deformability, peak and residual strength,
and post-failure behavior of these ‘small-scale rock masses’ and the results for (2 + 3) jointed
samples generally follow the trends derived from (1+2) jointed samples. Associating the role of
the structure to the observed complete stress-strain response of the specimen can improve our
understanding of the actual complete mechanical response of rock masses.

Peak strength and elastic Young’s modulus clearly depend on jointing, even if the first
parameter is also somewhat dependent in scale. The level of fracturing (joint intensity) or GSI at
a larger scale can be used to control the evolution of these parameters under particular
circumstances. However, results suggest that the structure seems to affect the elastic response
more significantly than the peak strength response of the samples. These results evidence that
strength and stiffness reduction in hard rock masses seems to be linked more relevantly to the
structure than to scale.

As noted earlier by the author (Chapter 5), axial and radial strain curves (represented against
stress) in jointed specimens, tend to mimic the equivalent curves for sound samples starting from
a particular stress level in the descending branches of these curves, Accordingly, residual strength
does not seem to be much affected by the degree of initial jointing. This suggests the possibility
of estimating rock mass residual strength starting from lab testing, as otherwise suggested by
other authors (Cai et al., 2007; Exadaktylos & Tsoutrelis, 1993).

Post-failure deformability is significantly depending on the level of confinement and it is
clearly also sensible to the level of jointing. In this way, more fractured rock samples tend to
dilate not so much as fresh rock or good quality rock masses at low confinement stress levels (i.e.
those occurring in the vicinity of excavations). This can be associated to the presence of planar
joints in the sample less rough than newly formed shear bands. This trend is also in line with Hoek
& Brown (1997) guidelines for rock mass dilation estimate.

To conclude, the complete stress-strain curves of rock and small-scale rock mass samples,
starting from laboratory strength tests were obtained. Some clear and interesting trends on the
behavior of rocks compared to jointed rocks were captured. They could be of help to improve our
insight on rock mass behavior, linking lab results on jointed tests to rock mass response.
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7. Strain-softening characterization of granitic rocks
and numerical simulation of servo-controlled

strength tests.

7.1. Introduction

The relevance of a thorough knowledge of the complete stress-strain curve in rock has
frequently been highlighted in the rock mechanics field, and most particularly, in its earlier
breakthroughs (Hudson et al., 1971b). The aim of the present research is to study the actual
behavior of rocks and to propose strain-softening and dilation models able to better represent the
observed stress-strain response of rock samples.

It is widely acknowledged that rocks and also rock masses suffer a strain-softening or strength-
weakening process after achieving peak stress. This is a complex behavior, so even simple strain-
softening models need a good number of parameters to reproduce its most relevant features.

Simple strain-softening models for rocks require at least elastic parameters (£ and v ), peak
and residual strength envelopes (typically two parameters each, as for instance: ¢, ¢'** ¢
and ¢*) and two post-failure parameters (for instance drop modulus, M, and dilatancy, ). These
8 parameters serve to recover the main features of this type of behavior (see upper graphs of Fig.
7.1). However, one must admit that this representation is still not very similar to the actual stress-
strain response of rock tests, as it can be derived from the comparison of this representation to
actual test results, as shown in the lower graphs of Fig. 7.1. In this chapter, a possible approach
to provide a more accurate model to simulate strain-softening behavior of granitic rocks as
observed in the lab is studied.
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Fig. 7.1. Theoretical (simple strain-softening) and actual stress-strain response of a rock sample
submitted to a triaxial test in the laboratory.
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To study this behavior the three series of around thirty unconfined and confined strength tests
(o3 in the range 0-12 MPa) in three different granitic rocks named Amarelo Pais, Blanco Mera
and Vilachan, respectively shown in Chapter 3 (Fig. 7.2) are considered. To do this, a servo-
controlled press was modified to control the axial stress during tests and also to measure the
volume of hydraulic fluid displaced from Hoek’s cell in triaxial tests, so that the volumetric strain
in the sample can be computed.

Fig. 7.2. Tested samples in the lab.

As a result complete stress-strain curves for different confinements in the three different
granitic rocks have been obtained, one of these stress-strain curves is shown in Fig. 7.3.
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Fig. 7.3. Complete stress-strain curve from a triaxial test.

In what follows, a methodology to characterize this type of behavior is proposed in order to
obtain numerical parameters able to reproduce the behavior observed in the lab.

In strain-softening behavior models, a softening parameter, 7, controls strength capacity.
Although 7 can be defined in a number of ways, the most widely used variable is shear plastic
strain, obtained as the difference between the major and minor principal plastic strains, as follows:

yh=el - (7.1)

This variable can be computed as shown in Fig. 7.1 and Fig. 7.4.
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7.2. Methodology

7.2.1. Correlation between strength and plastic strain

Based on results in confined tests (three or four tests for every granite and every confining
stress of 2, 4, 6, 10 and 12 MPa) as shown in Fig. 7.4, the values of o; corresponding to pre-peak
(the point where the line o7 - &; loses its linearity, related to the known as transition between stable
and unstable crack propagation also called long term UCS) were marked. The values of peak and
residual o7, and intermediate points between these values (25, 50 and 75%) were also computed.

Finally, the plastic shear strain values associated to all of these points have been estimated, as
illustrated on Fig. 7.4. In this way, for each test, pairs of values o; - y? representing yield
envelopes for different levels of plasticity have been recovered. See for instance in Fig. 7.5 the
graph of these results for o3 =4 MPa for one of the tested granites.

Starting from these series of data points, a curve to adjust these results was searched in the
literature, and a curve like the one presented in eq. (7.2) was found, which can accommodate the
results reasonably well.

o =allee? —_° |14 be _(C+d)efb7p
! c+d c+d-b

(7.2)

where a, b, ¢ and d are constants that can be fitted for every rock and confinement level. These
values have been fitted and the values of these constants against the confinement stress for every
granite type were represented. In this way the values of these parameters as a function of o3 for
every granite type as shown in Table 7.1 were obtained. In fact those are yield functions depending
on o3 and the level of plasticity suffered in terms of y”.
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Fig. 7.4. Estimate of relevant o;-y? points from stress-strain complete curves as explained in the text.
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Fig. 7.5. Representation of o;-y* points for triaxial tests with o3 = 4 MPa for Amarelo Pais granite.

Table 7.1. Fit of parameters a, b, ¢ and d dependent on o3 for the three different tested granites.

Amarelo Pais R?
a= 28.078 03 +212.74 0.967
= -0.0011-03 + 0.1835 0.385
c= 0.0034:- 03+ 0.1154 0.437
= 0.0004: o3 + 0.0200 0.139
Blanco Mera
a= 13.918 03 +224.62 0.933
b= 0.0031-03 + 0.6828 0.156
c= -0.0004- o3 + 0.0610 0.034
d= 0.0007-03 + 0.0091 0.441
Vilachan
a= 31.968 03 + 282.93 0.968
b= 0.0005 03 +0.1611 0.00003
c= 0.0001- 03 + 0.1441 0.0007
= 0.00002-03 +0.0167 0.007

Results of these curves for the three different granites analyzed and for various confinements
are presented in Fig. 7.6, Fig. 7.7 and Fig. 7.8, together with the original o; — y* points derived
from actual tests.
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7.2.2. Correlation between dilatancy and plastic strain

For rocks the dilation angle is smaller than the friction angle (Vermeer & De Borst, 1984).

These authors proposed as a suitable way to assess dilatancy:
. gr
¥ =arcsin————— 7.3
=2&l + &7 (7.3)

This formulation is valid for the interpretation of triaxial tests. The plastic axial strain can be
obtained as shown in Fig. 7.1 and Fig. 7.4. Some unloading-reloading cycles are necessary to
obtain more or less accurate values of the plastic volumetric strain (Fig. 7.1). Linking the points
of minimum strain in every cycle, the called irrecoverable strain locus is obtained, and from it,
values of &7 and &/ can be recovered. Based on this line, one can obtain a number of /-y pairs,
for every test.

This has been done in Chapter 3 and published elsewhere (Arzua & Alejano, 2013) and
dilatancy has been estimated according to the approach developed by Zhao & Cai (2010a), which
relates dilation angle with plastic shear strain (expressed in percentage of deformation):

7/,! P P
a'b'(e r —e”)

= (7.4)
v c'-b'
Where moreover a’, b’ and ¢ fit the following expressions:
a'= a'1+a'2‘e“'3
o (7.5)
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Using equations (7.5) another 3 coefficients are necessary to fit each confining dependent
parameter in equation (7.4). These coefficients have been fitted following the ideas by Zhao &
Cai (2010a) and they are presented in Table 7.2.

Table 7.2. Parameters of the plastic shear strain and confining stress dependent dilation angle model as
proposed by Zhao & Cai (2010a) for the three studied granitic rocks.

Amarelo Pais Blanco Mera  Vilachan

ar’ 29.01 21.13 3.79
ax’ 28.05 36.71 53.65
as’ 4.76 4.92 4.46
br’ 8.26 20.63 10.38
by’ 17.49 29.44 49.69
bs’ 1.5 2.97 2.19
cr’ 0.014 0.047 0.058
¢’ 0.0749 0.049 0.050
cs’ 0.711 0.589 0.295

There exist more simple models of dilatancy depending on confinement stress and plasticity
such as that proposed by Alejano & Alonso (2005). However, the results on granite samples of
this dissertation did not seemed to fit very well this model, which was initially developed back-
analyzing test results on samples of sedimentary rocks, such as coal, mudstone, siltstone and
sandstone.



7.3. Model results

With this information of evolving yield criteria, as in eq. (7.2) and Table 7.1, and dilation, as
in eq. (7.4) and Table 7.2, and once also derived the elastic parameters (£ and v), it is possible to
model or reproduce results of tests by means of calculation sheets, and compare them against
actual results.

Let’s start with the elastic phase, and then when arriving at pre-peak, the values of o; according
to eq. (7.2) and the values of yraccording to eq. (7.4) for every value of y? are recovered. Then
and accounting for:

7/17 =8P_€p=8p_&gngp[l_&J
1 3 1 7 1 1

2
. (7.6)
_ L+siny
Y 1-siny
It is possible to obtain the values of ¢/ and &5 associated to every o;:
p
dz—l;——
K
2 (7.7)
el = 7“’5{’
The corresponding elastic counterpart, &;° and &5°, are derived from the elastic constants:
e _0i
& =—
E
. o (7.8)

So one can obtain the corresponding & and &, associated to every o7, as well as the
corresponding value of &

g =& +¢&'
& =& +¢& (7.9)
g, =& +2¢

In this way, the model of the complete stress-strain curve of any test can be obtained. Examples
of the model and actual tests for samples of the three studied granites are shown in Fig. 7.9.

This representation of results is much more accurate and realistic than the typical simple strain-
softening models usually used for standard modelling, as that presented in the upper graphs of
Fig. 7.1.
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(Amarelo Pais, Blanco Mera and Vilachan), submitted to a confinement stress of 6 MPa.



7.4. Numerical approach

The code FLAC (Itasca, 2011) has been used to try to reproduce test results. In order to model
numerically the laboratory triaxial strength tests, it is first necessary to implement the presented
behavior model in the selected code.

7.4.1. Implementation of behavioral model

Code FLAC, implements an incremental plastic parameter ¢, whose incremental form is:

%
se {28 -ner ) 43 (e +3(aer - aer ) | (710

where Ag? = l( Ael” + Ag;”) and Aé‘f * with j = 1, 2, 3 are the principal increments of the
"3

shear plastic strain.

This incremental plastic parameter can be related to the more standard y? or plastic shear
strain. If a strain-softening material with constant dilation angle is considered, in addition
characterized by a plastic potential, then, the following relationship between y? and 7z4c can be
deduced (Alonso et al., 2003):

\/g 2 7/[)
Mrrac = \/1+K +K, (7.11)
3 v "1+K,

The reader can check how for null dilation 7rrac = y*/2.

On the other hand and in order to obtain the evolving failure criteria starting from eq. (7.2)
and parameters in Table 7.1, it is possible to obtain strength values for any confinement and for
different values of y”. This has been done and linear strength envelopes have been fitted for a
number of values of y” (from 3 to 13 mstr. 1 by 1, from 13 to 25 mstr. 3 by 3 and 25, 30, 35, 50
and 70 mstr.). For these linear envelopes, estimates of cohesion, ¢, and friction, ¢, were obtained.

Also for every value of y” (and o3 and type of granite) one can compute dilatancy as per egs.
(7.4) and (7.5) with parameters in Table 7.2. And with dilatancy and y” it is possible to obtain
nrrac asin eq. (7.11). An internal language subroutine has been created to update dilatancy values
following Zhao & Cai (2010a) dilatancy angle model every certain number of steps.

To introduce the behavior model and parameters in FLAC, pairs of points (¢, 7rr4c) and
(@, nrrac) for the failure criteria were used as those shown in Table 7.3, for the case of Vilachan
granite.

7.4.2. FILAC models

Simple models of triaxial tests have been created resorting to the axi-symmetric geometrical
possibilities of FLAC. Models present the half section of the cylindrical specimens with a rotation
axis in its left part (Fig. 7.10). The servo-control has been modelled by means of a subroutine
which induces a constant velocity (5e-8 m/step) in the upper and lower faces of the sample.
Additionally, a confinement stress is induced on the right hand side (Fig. 7.10). Models
corresponding to confinement stresses of 2, 6 and 10 MPa are run for the three different granites
and for 5 different mesh sizes including 10x40, 15x60, 20x80, 25x100 and 40x160 (Fig. 7.10),
in order to control and study the role of mesh in test result, which is known to control strain-
softening numerical models. An example of a FLAC model (that one corresponding to the
Amarelo Pais granite with a confining stress of 6 MPa and a mesh size of 40x80) is presented in
Appendix C.



Table 7.3. Values of friction and cohesion for different values of the plastic parameters (first y?, and
then, e, obtained from y?, and dilatancy) for the case of Vilachan granite with a confining stress of
6 MPa (similar tables are obtained for different confinements and for the different granites).

Granite Vilachan

7P 6 MPa i/ c
(mstr.) Ky e’ = nrrac (©) (MPa)
3 1.81 0.0015 57.87 11.17
4 1.81 0.0020 59.94 11.96
5 1.80 0.0025 61.03 12.40
6 1.79 0.0030 61.54 12.61
7 1.77 0.0035 61.69 12.65
8 1.76 0.0040 61.58 12.57
9 1.74 0.0046 61.28 12.40
10 1.73 0.0051 60.83 12.17
11 1.71 0.0056 60.26 11.51
12 1.70 0.0061 59.60 11.61
13 1.69 0.0066 58.86 11.29
16 1.65 0.0081 56.31 10.32
19 1.61 0.0096 53.48 9.41
22 1.58 0.0111 50.62 8.63
25 1.55 0.0126 47.94 7.99
30 1.50 0.0151 44 .24 7.24
35 1.46 0.0176 41.68 6.79
50 1.35 0.0251 38.74 6.34
70 1.25 0.0351 38.27 6.28
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Fig. 7.10. Boundary conditions and example of two grids used to numerically model the triaxial tests.



7.4.3. FLAC results

As an example of the results obtained, the numerical results with mesh size 15 x 60 of two
triaxial tests (2 and 6 MPa) on Amarelo Pais granite are presented together with actual test results
in Fig. 7.11. Fig. 7.12 illustrates the numerical results of a triaxial test (6 MPa, Amarelo Pais)
together with FLAC results in this case for three different mesh sizes.

&, Test (& MPa)
&£, Test (6 MPa)
&, Test (6 MPa)
£, FLAC (15x60)
&5 FLAC {15x60)
&, FLAC (15x60)
g, Test {2 MPa}
£, Test (2 MPa)
&, Test {2 MPa)
— ¢, FLAC (15x60)
&, FLAC (15x60)
&, FLAC {15x60)

A9 TRX (6 MPa) & A4 TRX (2 MPa)

] o, (MPa)

EEEN

-35 -25 : 35
£5(mstr) = — £, {mstr)
g, {mstr)

Fig. 7.11. Complete stress-strain curve (0; - &, 01 - & and &, - &) for two triaxial tests (2 and 6 MPa) in
Amarelo Pais granite. Actual tests and FLAC results with mesh size 15 x 60 corresponding to such
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Fig. 7.12. Complete stress-strain curve (o7 - &, 0 - & and &, - &) for a triaxial test (6 MPa) in Amarelo
Pais granite. Actual test and FLAC results with meshes 10x40, 20x80 and 40 x160.
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The obtained numerical results can be considered a reasonably similar representation of tests
even if, as usually happens in rock mechanics, there are slight discrepancies, so a number of points
are to be remarked and some comments are in order.

Strength is well represented by models. Peak strength values observed in models tend to be
slightly larger than those observed in tests. This trend is more marked for smaller meshes.
Residual strength values are generally well captured by tests, particularly for average mesh sizes
(15x60 and 20x40). Smaller meshes tend to overestimate the observed residual values. In the
radial strain, &, branch, the model does not capture well the large deformation in the phase
between the elastic part and the peak. This is difficult to capture for every model and it is due to
the ‘negative dilatancy’ of this phase.

The drop phase, between the peak and residual stage, is usually steeper in the models than in
the tests in the axial branch, &, especially for larger meshes. However, in the radial branch, actual
tests and results are more alike. The behavior of this drop phase is partially controlled by the
occurrence of shear bands, particularly for finer meshes. Some results concerning the orientation
of shear bands are being derived, but for the sake of briefness they are not presented in this study.

Volumetric strain, &, is in general well reflected in many tests, although in some cases, it is
slightly underestimated. This fact can be associated to the steeper response of the axial strain in
the drop phase.

Certainly, mesh size affect results, as it is well known for the case of strain-softening (Varas
et al., 2005) and, there are a number of differences highlighted in the previous paragraphs. Most
of these differences are however, within the limits of the natural variability of tests. All in all, the
obtained results are more realistic than those derived by means of standard simple strain-softening
approaches, as that shown in the upper part of Fig. 7.1.

7.5. Conclusions of this chapter

In this study, and starting from servo-controlled triaxial compressive strength tests with
unloading-reloading cycles on granite samples, a strain-softening behavior model is proposed
where evolving strength (from peak to residual values) is related to a plastic parameter and where
dilation is a confinement stress and plastic shear strain dependent parameter.

Three different granite types are characterized according to the above indicated behavior
models and simple computations are performed, able to represent the complete stress-strain curve
as observed in the laboratory for granite samples with a good level of accuracy.

Moreover, this non-simple behavior model has been implemented in FLAC in our best possible
way and accounting for the particularities of this code (different plastic parameter, evolving
failure criteria in Mohr-Coulomb terms...). Axi-symmetric models of the tests in the different
granites with different mesh sizes have been run to find out that numerical results of the complete
stress-strain curve are a reasonably accurate representation of the actual observed behavior.



8. Impact of post-failure rock mass behavior on

excavation response

8.1. Introduction

The extent of rock failure and the displacements induced by the process of excavation around
an underground opening are closely related to the rock mass behavior. Whereas, at low depth,
joints usually control instability mechanisms, in deep excavations the compression-induced
failure processes of rocks and large deformations of the openings are the basic concern.

With the increasing use of numerical models in rock engineering in recent decades, excavation
design has often come to rely on numerical studies. A visit to a number of publications on this
topic reveals that in many cases simple behavior models, such as the elastic-perfectly-plastic one,
are used to analyze rock mass behavior. More complex behavior models accounting for post-
failure phase such as strain-softening are seldom utilized. Finally, the role of the dilation angle is
rarely taken into account; and when it is considered, the approach tends to be extremely simplistic.

Hoek & Brown (1997) suggested that rock mass behavior may vary according to the quality
of the rock mass. They proposed that the elastic-brittle (EB) behavior properly represents the
behavior of good to very good quality rock masses (GSI > 75). Strain-softening (SS) behavior
seems to adequately model the typical stress-strain response of average quality rock masses
(25 < GSI < 75). Finally, elastic-perfectly-plastic (EPP) behavior seems to accommodate
reasonably well the stress-strain response of low quality rock masses (GSI <25) (Fig. 8.1). From
a mathematical perspective, this last behavior, where peak and residual failure criteria are the
same, is relatively easy to work with. Remark that EPP and EB behaviors can be considered as
limiting cases of the more general SS behavior.

Alejano & Alonso (2005) described a new model to estimate the dilation angle in rocks and
rock masses. It showed dependencies on confining stress, on the plasticity suffered by the material
and indirectly on scale; the whole study was based on results of tests on sedimentary rocks. The
model could be implemented in numerical codes such as FLAC (Itasca, 2011).

A

)

Increasing GSI

>
&

Fig. 8.1. Schematic behavior of rock masses according to rock mass quality, as suggested by Hoek &
Brown (1997).

This chapter has been presented at the 46" US Rock Mechanics — Geomechanics Symposium with the following
citation: Alejano, L.R., Arzfa, J., Alonso, E. 2012. Impact of post-failure rock mass behavior on excavation response.
46th US Rock Mechanics / Geomechanics Symposium. 24-27, June. Chicago. 3:2166-2176



Zhao & Cai (2010a) proposed an evolved mobilized dilation angle model. Based on the model
response, and in combination with grain size description and uniaxial compressive strength of
rocks, the approach was generalized for different rock types including hard rocks. In a subsequent
study, Zhao & Cai (2010b) performed numerical simulations to study excavation-induced
displacement around excavations located in different rock mass types using their model extended
to rock masses. They showed that the displacement distributions obtained were more reasonable
than standard models when compared to general trends observed underground.

Even if strain-softening (SS) behavior can reasonably represent average quality rock mass
behavior, it was still not easy to obtain representative values for all the parameters needed to
simulate this behavior. This includes peak and residual failure criteria (for instance, peak and
residual cohesion, friction and tensile strength for the Mohr-Coulomb failure criterion). These
parameters also include elastic properties, namely elastic Young’s modulus, £, and Poisson’s
ratio, v, and post-failure deformation parameters such as the drop modulus, M, and dilation, .

Obtaining a reasonably accurate estimate of all these parameters for SS rock masses is not a
simple matter, even with the helpful tools developed in recent years by Hoek & Brown (1997),
Hoek et al. (2002), Crowder & Bawden (2006) and Cai et al. (2004, 2007). A general
characterization approach has recently been proposed by Alejano et al. (2010) based on the
indicated references and accumulated experience. It can be considered as a reasonable initial
approach that should be fine-tuned on a case-by-case basis and it is used in this study to estimate
some of the input parameters needed for the models and particularly shear plastic strain limit
(¥?*), or the value of the shear plastic strain (y” = &/ - &) at which the residual strength level is
attained.

Within this framework, in this chapter the author first present a series of servo-controlled tests
on a granite rock, from which the most relevant parameters have been derived. These tests also
contribute as experimental data to complete the database needed to study dilation, so far non-
existing in granitic rocks (Zhao & Cai, 2010a).

Then the author have considered three rock masses of different rock mass quality (GSI equal
to 65, 50 and 35) formed by this granite and located at considerable depth. The author would like
to highlight the fact that such rock masses had been once massive non-jointed granite masses
formed deep in the earth crust. Once submitted to high stresses (over the strength of the rock) due
to tectonic processes, the granitic rock failed, producing 2 or 3 joint sets and, as a consequence,
the major principal stress is relaxed, so the stress energy has now become failure and deformation.
Then it could be considered an average quality rock mass.

As previously stated, average quality rock masses behave in a strain-softening way. This
behavior is also observed in triaxial tests in the laboratory for granites (Fig. 8.2). From the author’s
scope, as far as a rock is suffering more unloading-reloading cycles, it behaves in the same way
as a worse quality rock mass and therefore in a more ductile (elastic-perfectly-plastic) way.
Moreover and as stated by Archambault et al. (1993), this seems to be true at all scales. Remark
that, however, lab scale parameters cannot be directly extended to underground excavation
behavior.

Once the rock masses are characterized as mentioned above, the strain-softening and variable
dilation behavior is implemented in the two-dimensional code FLAC (Itasca, 2011) and some
examples of tunnel excavations are run. These numerical models show that the response of a
tunnel excavation in its section boundaries and its face are different from the one that could be
expected for ideally elastic-perfectly-plastic rock masses in terms of the extent of the plastic
aureole and deformation.
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Fig. 8.2. Confined compressive test of a rock sample with unloading-reloading cycles and comparison to
rock mass behavior, as explained in the text.

8.2. Laboratory characterization

In previous developments, the John P. Harrison Rock Mechanics’ Laboratory of the
University of Vigo set up a servo-control system in a standard 200 tons press, so that one can
control the velocity of application of stress or strain, being able to perform different load path
tests as desired and explained in Chapter 3. Reliable post-failure results in unconfined
compressive tests in weathered granite were obtained (Alejano et al., 2009a).

A step forward has been to install a servo-control for the confinement stress in triaxial tests to
control the confinement pressure while testing, but also to measure the volume of hydraulic fluid
in the Hoek’s cell, as proposed by Crouch (1970). Using water as hydraulic fluid it is possible to
estimate the volumetric strain of the rock sample as far as the tests develop.

An experimental programme was planned to study a lightly weathered granitic rock, locally
known as Amarelo Pais. It is a hard rock used in Galicia as a building material and it has been
classified as adamellitic granite. It has a tan color and coarse texture. More than thirty 54 mm
diameter specimens were cut from original 40 cm x 40 cm x 40 cm blocks provided by a quarry
producer.

Typical results of unconfined tests are shown in Fig. 8.3.a, where it can be seen how to obtain
the main parameters: peak and residual strength (07 peak and o7 ), €lastic parameters (apparent
Young’s modulus, £; and apparent Poisson’s ratio, v) and also the drop modulus, M. Often, post
failure parameters were not registered in unconfined tests because rock samples were too brittle
for the press and the rock crushed in an explosive manner. However, these parameters have
been computed whenever possible.

In triaxial tests (Fig. 8.3.b) it was impossible to directly measure radial deformation since
strain gauges were previously discarded. On the other hand, one can measure volumetric strain
and, starting from this value and from the axial strain, it was possible to estimate the radial
strain. All the tests were performed meeting the basics of the standards (ISRM, 2007).

131



Table 8.1 shows the most relevant strength, elastic and post-failure parameters recovered
from every test performed.

a) Unconfined servo-controlled strength test
Amarelo Pais

100

&5 (0.1%)
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Confined servo-controlled strength tests
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Fig. 8.3. Typical stress-strain graph for a) unconfined compression test on granite rock sample. It is
shown how to obtain the values of peak and residual strength, apparent elastic Young’s modulus,
apparent Poisson’s ratio and drop modulus b) confined triaxial tests for different values of confinement.
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Table 8.1. Results of compressive tests on granite.

Sarnple 03 O1,peak O res E v M
(MPa) (MPa) (MPa) (GPa) (GPa)
A1 RCS 0 77.50 - 21.67 0.13 --
A2 RCS 0 84.64 - 22.36 0.19 --
A3 RCS 0 76.66 2 17.63 0.20 --
A4 RCS 0 75.60 5 22.92 0.18 --
A5 RCS 0 80.34 2 20.27 0.15 --
A6 RCS 0 76.91 2 18.59 0.18 --
A7 RCS 0 68.47 -- 17.60 0.21 --
A8 RCS 0 77.19 2 19.30 0.17 --
A9 RCS 0 74.85 2 18.97 0.17 --
A10 RCS 0 76.17 -- 16.35 0.19 --
Al11RCS 0 80.08 -- 15.95 0.16 --
A12 RCS 0 74.74 1 16.00 0.15 -19.11
Al TRX 2 130.42 32 30.54 0.19 -17.39
A2 TRX 2 117.33 30 23.40 0.19 -16.00
A3 TRX 2 112.29 27 22.32 0.22 -16.67
A4 TRX 2 110.31 31 23.95 0.20 -17.65
A5 TRX 4 134.20 44 25.06 0.19 -21.06
A6 TRX 4 130.02 43 24.36 0.22 -17.39
A7 TRX 4 129.89 54 25.25 0.20 -17.15
A8 TRX 4 129.50 46 23.84 0.22 -22.10
A9 TRX 6 153.90 51 27.48 0.21 -21.05
A10 TRX 6 170.72 45 30.02 0.21 -19.55
All TRX 6 175.43 48 30.01 0.20 -19.05
A12 TRX 6 169.00 51 30.40 0.18 -17.57
A13 TRX 10 192.75 80 28.06 0.22 -19.03
Al14 TRX 10 213.99 75 35.49 0.19 -21.69
Al15 TRX 10 200.71 87 33.69 0.15 -21.74
Al16 TRX 10 193.09 68 29.45 0.21 -20.18
Al17 TRX 12 214.99 81 31.20 0.20 -18.52
Al18 TRX 12 230.14 80 36.08 0.20 -20.00

8.2.1. Interpretation of tests: elastic and strength parameters

Results obtained in Table 8.1 have been studied to obtain the main geomechanical features

of the rock.

First, peak and residual Mohr-Coulomb (M-C) and Hoek-Brown (H-B) failure criteria have
been fitted to the strength values obtained in tests. These curves, together with the original test
data are presented in Fig. 8.4 and Table 8.2. Since triaxial tests were only performed up to 12
MPa of confining pressure, the curvature of the enveloping failure is not very marked for the
contemplated range of confining stresses.
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Peak and residual test results and M-C and H-B failure criteria
Amarelo Pais
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Fig. 8.4. Peak and residual strength test results and M-C and H-B failure criteria fit for the tested
granite.

Table 8.2. Basic geomechanic results of Amarelo Pais granite.

Hoek-Brown Mohr-Coulomb

Gepeai = 85.45 MPa
Bpeak = 57.59 °

Gepeak = 76.59 MPa

Peak Strength ;11;2—: 30933 Coeat = 12.42 MPa
R?=0.999
Ocres = 20.71 MPa
Residual Geres = 14.68 MPa Bres = 43.04 °
m=21.14
strength R2=0979 Cres = 4.5 MPa
R?=0.994
E=19.91+1.256-03 (GPa); Epear= 19 MPa
v v=0.19
M M=-19.73 GPa

It should be highlighted that for the peak criteria, very good regression analyses were obtained
for the M-C failure criterion, although H-B also fits well. The same happens for residual strength,
M-C seems to fit results slightly better than H-B. One can highlight the very high values of Hoek-
Brown parameter, m (in the upper range of typical values for rocks) and the friction angle, ¢, and,
in addition, the fact that this friction angle does not diminish in a significant manner from the
peak to the residual case. It is also remarkable how the drop in strength occurs mainly in the
cohesive component.

The apparent Young’s modulus for the different samples have been obtained as the slope of
the g, - & curve between 30 and 60 % of the peak strength. A trend of growing E with increasing
o3 is observed and presented in form of equation in Table 8.2.
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8.2.2. Interpretation of tests: post-failure parameters

The values of drop modulus, M, or slope of the o07-¢; curve in post-failure stage, have also been
estimated in an approximate way, since they do not show a clear straight trend. M has been
estimated for each test, as Table 8.2 shows, an average value around —20 GPa is recovered.

For a standard triaxial test in which confining stress is applied to a sample peripherally and
under homogeneous deformation conditions & = &3, and so & = & + 2¢&;. Thus, dilation angle in
these tests can be computed from:

siny =———— (8.1)

Since it is possible to directly obtain the values of &, and & in the performed triaxial tests, the

expression by Vermeer & De Borst (1984) can be used:
ép
siny = ——— 8.2
=2&l +¢&f (82)

The advantage of this approach (Alejano & Alonso, 2005) is that it is valid for triaxial tests,
but that it can also be applied to plane strain conditions, and even to true triaxial situations. It
should be pointed out that for plane strain conditions the fraction denominator represents in
absolute terms, the plastic shear strain, y”, defined from internal variables:

y'=g"-¢&f (8.3)

Consequently, to obtain dilatancy angle, it is necessary to obtain the incremental plastic strains,
which means picking some arbitrary segments in complete stress-strain curve to get the
incremental strain and make the decomposition of total strains into their elastic and plastic parts:

P
E=¢& t& (8.4)

Decomposition of total strains into their elastic and plastic parts can be done graphically as
explained in Chapter 3 and depicted in Fig. 8.5.

Using this methodology a points’ cloud is obtained for each confinement stress, as shown in
Fig. 8.6. Then the approach developed by Zhao & Cai (2010a) has been applied in order to obtain
the dilation angle parameters. The approach presented by Alejano & Alonso (2005) derived from
sedimentary rocks did not fit the results obtained for granite.

The fitted parameters are shown in Table 8.3, in the first line of values. This table also shows
the same parameters as obtained by Zhao & Cai (2010a) for a quartzite and a strong sandstone
(second and third line of values respectively) in order to check that the recovered values are within
a reasonable range. These parameters should be included in eq. (8.5) (Zhao & Cai, 2010a) to
obtain an estimate of the dilation angle value corresponding to a confinement stress and to a level
of plastic shear strain as follows:

—_hyP P
ab(e br —e”)
c—b

l//:

where:
-0 (8.5)
a=a +a,e”
-o;
b=b +b,e"
c=¢+c¢, 00

where, now, y” is expressed in percentage of deformation and o3 in MPa.
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Fig. 8.6. Dilation angle vs. plastic shear strain for various confinement levels. Lab results and fits.
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Table 8.3. Parameters of the plastic shear strain and confining stress dependent dilation angle model for
the studied granite (this study) and two other rocks (Zhao & Cai, 2010a).

* aj as as b; b; bs i C2 C3

1 29.01 28.1 4.8 826 175 1.5 0.014 0.075 0.71
2 63.17 119 2.8 5.8 36.2 6.8 0.14 1.14 1.23

3 14.63 349 34 406 156 55 0.08 04 058
* 1 granite this text, 2 quartzite (Zhao & Cai, 2010a) and * sandstone (Zhao & Cai, 2010a)

8.3. Rock mass characterization and models

Under this heading rock mass characterization techniques and the models to be performed are
presented.

8.3.1. Rock mass characterization techniques

The simulated rock masses to be studied have been characterized as strain-softening and
variable dilation materials presenting Mohr-Coulomb strength criteria.

In what concerns peak strength and elastic parameters, the rock mass characterization
approach used in this study is based on the one proposed by Hoek et al. (2002) implemented in
the code RocLab (Rocscience, 2009). In order to obtain residual strength values and based on the
approach by Cai et al. (2007), a reasonable guess has been made, concerning the value of the
residual GSI, based on the following equation:

GSI™ =17.25""7 (8.6)

With this value of GSI™ and using again RocLab, residual strength parameters can be
computed.

Tensile strengths are obtained by means of the expression (Hoek et al., 2002):

o, = _S':lff (8.7)

For both peak and residual values.

The value of the drop modulus, and consequently, that of y7* is estimated following the
approach by Alejano et al. (2010), which is briefly exposed in what follows. The value of the drop
modulus is a value depending on the Young’s modulus of the rock mass, £, obtained as suggested
by Hoek et al. (2002), according to (Alejano et al., 2010):

M =-wE (8.8)

The value of the ratio w depends on the GSF*** and confinement-stress level and can be
estimated according to:

= (0.0046.60.0768‘G31peak ){@

-1
C’j for oy > 0.1
CTS

(8.9)

peak

-1
© = (0.0046:¢° 7™ )-[&m.osJ for o, < 0.1
-

where 57 refers to the Hoek-Brown parameter s of the rock mass, and o3 is the average
confinement stress, which for the case of tunnels can be estimated as half the value of the so-
called critical pressure, that is:
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K -1
P =g, —| 2 (aﬁ G“J (8.10)

K, +1{ 7 K, -1

where:
K, = 1+s?n¢
I-sing
o'(l :20 M
' I-sing

and where ¢ and ¢ refer to peak values and oy denotes the average field stress.

(8.11)

Introducing this value of o3 = P /2, in the following equations, it is possible to obtain the
values of the principal strains corresponding to the achievement of residual state (Fig. 8.7):

I 1
glp = [Gl,peak (0-3 ) - O-l,res (0-3 )][E _Mj (8 12)
And
1 1+si
o =Ll (8.13)
2 1-smy
O; A
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) yPr=el + g/

ba

Fig. 8.7. Stress-strain relationships for a modelled SS rock mass to estimate the value of y?*.



For the sake of simplicity, a constant value of dilatancy is considered in this formula as shown
in eq. (8.17). Finally, the critical plastic parameter corresponding to a particular value of o3 is
obtained from the results of Egs. (8.12) and (8.13) as:

y=g —& (8.14)

in which y?* is confinement-stress-dependent. Remark that y”* can be translated to the plastic
parameter used by FLAC (Itasca, 2011), as proposed by Alonso et al. (2003) and explained in
Zhao & Cai (2010a) according to:

* 3 [ A
irac =Mrac = 5 1+ K, +K - (8.15)
3 v Y1+ K,
where:
1+sin
Kw =—.W (8.16)
l—-siny

Again, for the sake of simplicity, a value of constant dilatancy as shows eq. (8.17) is used in
the previous expressions.

This model is implemented in FLAC (Itasca, 2011) by means of the strain softening/hardening
model, in such a way that peak strength parameters (c, ¢, ;) are associated to no plastic strain
and these values diminish linearly to achieve the residual ones for the calculated value of 7%r4c.

Remark that, in this approach, the rock mass post-failure behavior only depends on rock mass
quality and stress level, but not on post-failure behavior of samples.

Finally the plastic shear strain and confinement stress dependent dilation angle is estimated
following the guidelines given by Zhao & Cai (2010b) to obtain these values starting from lab
data. This involves re-estimating the values of a; and a», so that for the unconfined case the peak
dilation angle equals that of peak friction of the rock mass. The rest of the parameters (a3 and the
b; and ¢;) are kept as for the rock at lab scale (Table 8.3).

For modelling purposes and also for the estimate of y”*, average constant dilation angles have
been estimated by means of the following expression, proposed by Alejano et al. (2010) in the
light of the guidelines given by Hoek & Brown (1997):

_ 5GSI-125

Toog? for 25<GSI<75 (8.17)

8.3.2. Model basics

A 5 m radius tunnel located at a depth of 1500 m excavated in different quality rock masses
(GSI 35, 50 and 65) have been selected to analyze the response of excavations to different rock
mass behavior models. This analysis focuses on plastic zones and displacements. An isotropic
stress field has been chosen for comparative purposes, since in this case, the convergence-
confinement technique can be applied to obtain the displacement in the tunnel spring-line and the
extent of the plastic zone when using some simple models.

FLAC (Itasca, 2011) has been used to study the response of excavations. Since the author are
particularly interested in the response of the tunnel face, an axi-symmetric model was set up. The
discretized area was 50 m x 85 m. Mesh size was gradually reduced towards the tunnel face. A
symmetry axis was set for x = 0. The tunnel was presented as a rectangle of length 45 m, in such
a way that the excavation of the tunnel can be performed sequentially. The normal displacements
were fixed in the symmetry axis and on the bottom part of the model. Normal pressure of
40.5 MPa was applied to the remaining (upper and right) boundaries of the model (Fig. 8.8).

A simple subroutine has been created in the FLAC (Itasca, 2011) internal language to
implement the dilation angle model as presented in eq. (8.5) accounting for the utilized units and
FLAC variables.
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Fig. 8.8. FLAC mesh used to perform the tunnel simulations to investigate face behavior.

8.3.3. Rock masses parameters

The needed parameters obtained for the three granitic rock masses to analyze, derived from
the above rock mass characterization approach are presented in Table 8.4.

Table 8.4. Relevant parameters of the modelled rock masses.

Parameter unit GSI 35 GSI 50 GSI 65
GSIes 25.08 29.44 34.57
Cpeak MPa 4.57 5.69 6.95
Dpeak ° 38.7 43.0 47.2
Oy peak kPa 13.9 43 134
Cres MPa 3.85 4.23 4.66
Dres ° 35.66 36.85 38.25
Oy res kPa 6.59 9.15 13.5
E GPa 3.69 8.75 20.75
1% - 0.28 0.25 0.22
M GPa -0.089 -2.046 -50.87
i (constant) ° 1.93 5.37 9.49
yr* str. 0.1372 0.0154 0.0027
ePrLac str. 0.0686 0.0077 0.00137
a; (Z&C) - 21.1 26.5 31.2
a> (Z&C) - 17.8 16.7 16
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8.3.4. Numerical models

A number of simulations for the 3 different quality rock masses (GSI 35, 50 and 65) are run.
The most realistic models from the authors’ point of view are those considering strain-softening
behavior and a mobilized dilation angle model as the behavior shown in Fig. 8.9. This dilation
angle model adjusted for the rock mass of GSI = 50 as indicated above is presented in Fig. 8.10.

Rock mass behavior model

Strain-softening and variable dilation
7

€

O3

Peak strength 11
¢, . =5.69MPa e

peak

¢peul( =u3F
Residual strength
Coe =4.23 MPa

4. = 36.85°

Elastic parameters K, /2
E=8750 MPa

v=10.25 4

Fig. 8.9. Stress-strain behavior response of a strain-softening and mobilized dilation angle model
material, as that representing a rock mass.

Dilation angle model for a granitic rock mass
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Fig. 8.10. Dilation angle model for the granitic rock mass (GSI = 50) obtained based on lab data and
following the approach suggested by Zhao & Cai (2010b).
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For each rock mass six different models have been run, considering EPP (elastic-perfectly-
plastic), SS (strain-softening) and EB (elastic-brittle) (Fig. 8.1) rock masses and in each case for
constant dilation as derived from eq. (8.8) and with the mobilized dilation angle model. This has
been done in this way in order to compare and better understand results of excavation response.
An example of a model is presented in Appendix C (the model corresponding to a strain-softening
rock mass, GSI = 50 and variable dilation).

8.4. Numerical results

For the most realistic cases (strain-softening and variable dilation) the dilation distributions
obtained in the three cases are shown in Fig. 8.11. It can be observed how the plastic zone shrinks
for increasing rock mass quality, whereas dilation tends to be higher in the plastic zones of the
better quality rock mass. It is also to be remarked that the values attained by dilation in the plastic
zones are larger than those average values derived from simple approaches and that they produce
larger displacements in excavations.

Although extensometric measurements in deep excavation are not very common, some authors
have reported values larger than expected (Zhao & Cai, 2010b). Remark that in any case, the
application of reinforcement and support can mitigate this effect, and this can be one of the
reasons of the good results obtained when applying them.

As indicated for illustrative purposes in Fig. 8.11, in every model the author have computed
the plastic radius (R,), the extent of the plastic zone in front of the face (R,/), the maximum
displacement in the spring-line (u,) and the displacement in the tunnel face center (). These data
have been recovered because they may be indicative of tunnel behavior.

Results of these values are presented in Table 8.5 for all the run models, together with basic
results obtained by means of code RocSupport (Rocscience, 2011) for particular simple models.
RocSupport data refer to constant dilation EPP (M-C and H-B) and EB (H-B) models. These
results are presented for comparative purposes. Observe that the values of R,; and u, obtained for
FLAC EPP models with constant dilation basically coincide (are approximately 10% larger due
to boundary conditions) with those obtained for equivalent materials with RocSupport.

A comparison of results shows that dilation plays a relevant role in the deformations of tunnel
walls and faces. This role is captured by the dilation approach used, even if further research is
needed to calibrate it more accurately. The behavior of face has been claimed to control tunnel
behavior (Lunardi, 2008), and it is largely affected by dilation. However, dilation does not
significantly affect the extent of the plastic zones around the excavations. This can be seen by
comparing the plastic radii of the different models with constant and variable dilation.

It is also to remark, in line with the ideas by Hoek & Brown (1997), that whereas for the low
quality rock mass (GSI = 35) EPP and SS models yield similar results (and EB differs); for the
higher quality rock mass (GSI = 65) SS and EB yield comparable figures, and EPP is somewhat
different (See Table 8.5 and Fig. 8.1).

When an EB behavior is mentioned, it is referred to a rock mass following standard failure
criteria (H-B or M-C) and it does not refer to those producing spalling associated to the
propagation of cracks. These spalling mechanisms have been modelled by means of the so called
CWFS (Cohesion-Weakening-Friction-Strengthening) approach. According to Diederichs &
Martin (2010), the upper limit up to where the EB model can well represent rock masses is
established in GSI 80 for soft rocks and in GSI 65 for hard rocks.

On the other hand, the selected behavior model does not seem to relevantly affect the levels of
deformation observed in the tunnel face and in the tunnel spring-line. For instance for the GSI= 50
and constant dilatancy model, results show displacements in the tunnel face (and on the tunnel
spring-line) of 28 (32), 32 (59) and 41 (60) mm respectively for the EPP, SS and EB model.
However, for the above indicated behavior models the extent of the plastic zone in front of the
face grows from 1.7, to 2.3 and 2.7 meters, respectively.
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Table 8.5. Results of the extent of the plastic zone and displacement observed in tunnel models, as
obtained with FLAC, except those obtained with RocSupport.

GSI MOD-DIL Ry (m) R, (m) u, (mm) us(mm)
35 EPP-ct.dil. 7.1% 2.7% 124.9 80.5
35 EPP-var.dil. 7.1% 2.7* 158.1 107.5
35 SS-ct.dil. 7.1% 2.7% 131 83.06
35 SS-var.dil. 7.1% 2.7* 178.1 118.8
35 EB-ct.dil. 7.7% 3.3% 158.6 98.4
35 EB-var.dil. 7.7% 3%* 216.6 146.7
35 RocS EPP MC 6.97 109.42
35 RocS EPP HB 7.34 128.78
35 RocS EB HB 8.14 167.02
50 EPP-ct.dil. 6.15% 1.7% 42.03 28.48
50 EPP-var.dil. 6.15% 1.7* 52.15 31.54
50 SS-ct.dil. 6.75% 2.3% 53.61 32.3
50 SS-var.dil. 6.75% 2.3* 84.84 59.32
50 EB-ct.dil. 6.75% 2.7% 58.9 40.59
50 EB-var.dil. 6.75% 2.3% 86.83 59.73
50 RocS EPP MC 6.15 37.04
50 RocS EPP HB 6.31 42.47
50 RocS EB HB 7.22 62.63
65 EPP-ct.dil. 5.55% 1* 15.41 11.27
65 EPP-var.dil. 5.55% 0.7* 17.43 11.25
65 SS-ct.dil. 6.15% 1.7% 21.86 13.5
65 SS-var.dil. 6.15%* 2% 3247 21.61
65 EB-ct.dil. 6.15% 2% 223 15.7
65 EB-var.dil. 6.15% 2% 33.64 21.98
65 RocS EPP MC 5.64 13.43
65 RocS EPP HB 5.71 14.83
65 RocS EB HB 6.52 23.00

Fig. 8.12 shows different results of deformation of a tunnel face for the case of the rock mass
with GSI = 50. In this case, for an elastic-perfectly-plastic model a tunnel extrusion of 28 mm is
observed (Fig. 8.12.a). In the case of a strain-softening model with constant dilation this value
would increment to 32 mm (Fig. 8.12.b). Finally a strain-softening model with variable dilation
would take that value to 59 mm (Fig. 8.12.c), nearly the double of the expected values derived
from conventional models.

It is relevant to finally consider the fact that in some models, particularly in those with
GSI = 65, tensile failure is observed on the tunnel face. If a null residual tensile strength is
considered, this will involve spalling in the face. Further studies on this topic could be of interest.
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8.5. Conclusions of this chapter

The role of dilation in rocks and rock masses behavior has been largely overlooked in the past
probably due to its complex nature. However, based on recent developments of different authors
it is possible now to include this behavior in numerical models, considering the shear plastic strain
and confining stress dependent nature of the dilation angle.

The parameters needed to apply this model to rocks can be reasonably estimated from servo-
controlled unconfined and confined compressive tests with unloading-reloading cycles in
laboratory. The extrapolation of these parameters to the rock mass scale can be done assuming
that the peak value of the dilation angle tends to be equal to the friction angle of the rock mass.
Even if this seems reasonably true for good quality rock masses, for low quality ones the role of
discontinuities should be also taken into account. This is why the above indicated assumption
deserves further research.

Oversimplified behavior models —for instance elastic-perfectly-plastic (EPP) approaches,
commonly used in daily practical engineering modelling— may produce high levels of errors in
the analysis and design of excavations. These errors can be particularly more relevant for tunnels
and drifts excavated in average to good quality rock masses in the range of GSI 40 to 60, where
a strain-softening modelling approach could be more rigorous.

In this chapter the author, using 30 performed compression strength tests in a granitic rock,
obtained the parameters needed to estimate dilation in a reasonably accurate way. Different
quality rock masses made of this rock have been characterized according to present trends in order
to obtain all the parameters needed to simulate these rock masses as strain-softening and variable
dilation materials.

In order to study the role of post-failure rock mass stress-strain behavior on the response of
underground excavations and for illustrative purposes, models of a tunnel excavated in these rock
masses at great depth have been performed, and displacements and extensions of the plastic zones
have been analyzed.

As a result, it has been observed that the dilation model affects in a significant manner the
level of displacements observed in the tunnel face and walls; however, this dilation does not
relevantly control the extent of the plastic zones. On the other hand, the selected behavior model,
namely EPP, SS or EB, seems to be relevant in what concerns the extent of the plastic zone around
the tunnel and in front of its face, but its influence on the displacement level in the analyzed cases
is scarce.

Moreover, this type of models can be interesting to study the expected stress-strain response
of excavations, including the estimate of face extrusion as suggested by Lunardi (2008). This
could be useful to account for the behavior of the tunnel core, which could be of help to be able
to provide a more sensible design. However, more research is convenient to fine-tune the
presented techniques and specially to contrast results with the response of actual excavations.

Finally, the author would like to emphasize that these applications should be used on a site
specific basis, with certain caution and within the framework of wider methodological approach,
such as that suggested by Starfield & Cundall (1988).
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9. Conclusions

The main aim of this doctoral work was to provide laboratory data to further investigating the
dilatant behavior of rocks and rock masses. To do that, the existing press in the John P. Harrison
Rock Mechanics’ Laboratory of the University of Vigo was modified in order to not only servo-
control the axial loading but also the confining pressure in triaxial strength testing. Moreover, this
fully servo-controlled press allowed to measure axial and radial displacements in unconfined
strength tests, and, for the case of confined tests —carried out with the help of a Hoek’s cell—
the displaced volume of hydraulic fluid in order to maintain the confining stress could be also
measured at all times. This displaced volume could be correlated to the volumetric strain of the
tested specimen, allowing to recover the complete stress-strain curve of each test. That is, the
axial and confinement stresses together with the axial and volumetric strains can be controlled at
all times all along a confined test.

The strength tests were performed, when possible, reaching the residual state. This discarded
the strain gauges for strain measures due to both its limited measure range and its uselessness if
a shear band appears. Instead the axial and radial displacements in unconfined tests and axial
displacement in confined tests were measured using LVDTs, which showed adequate precision
and a relatively large range of measurement.

The controlling software of the press allowed to perform the strength tests with unloading-
reloading cycles, which are very convenient to get the locus known as irrecoverable strain locus,
which, in turn, allows to distinguish the plastic and elastic components of the volumetric and axial
(and, indirectly, radial) strains.

Once the equipment allowed to collect the applied stress and the plastic components of the
strains during a strength test and reaching the residual state, it is possible to obtain the evolution
of the dilation angle for each tested specimen. The dilation angle is a suitable parameter to
describe the dilatant behavior of rock. Dilatancy is the change in volume of a material, in this case
rock, resulting from the shear distortion of its components.

As part of this Ph.D. work, 230 rock specimens of 8 different rocks (3 granites, a marble, two
limestones, an amphibolite and a gneiss) were prepared and tested in unconfined and confined
conditions. The interpretation of these tests provided the evolution of the dilation angle for each
test depending on the plastic strain and confining stress, as well as all other relevant geomechanic
parameters (Young’s modulus, Poisson’s ratio, peak strength, residual strength...). The
contribution to the world database on complete stress-strain curves for different kinds of rocks
able to provide data in the post-failure behavior range of rocks is a relevant achievement of this
Ph.D. study.

The dilation angle is known to show dependency on rock and rock mass scale and/or structure,
so the idea was developed to test jointed rock samples as if they were small-scaled rock mass
analogues. In this way, a new type of strength test was performed using artificially jointed
specimens (22 specimens featuring 3 joints and 20 specimens featuring 5 joints) aimed to study
this scale/structure dependence. Probably this development is one of the most relevant
contribution of this dissertation to rock mechanics knowledge.

Young’s modulus demonstrated its dependency with confining stress and structure, increasing
as the confining stress increased and diminishing when level of jointing increased. However, the
relationship with confining stress was not linear as commonly accepted so far, turning to be
logarithmic dependent. Young’s moduli showed a great increase in the first tenths of MPa of
confining stresses, slowing down the increase ratio when confining stress grows.

Poisson’s ratio does not show any clear trend when varying confining stress or structure. This
parameter showed a relatively high spread for low confining stresses, tending to a more stable
value for higher confinements.

Most commonly used failure criteria (Mohr-Coulomb and Hoek-Brown) were fitted to peak
strength results. Due to the relatively low range of confining stresses (up to 12 MPa), both criteria
fitted the tests results quite well, although the use of generalized Hoek-Brown criterion for jointed
specimens greatly improved the quality of the fit for this small-scaled rock mass analogues. The
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obtained failure functions showed typical dependencies: as confining stress increases, peak
strength increases and as structure increases (number of joints), peak strength decreases.

Both failure criteria also were fitted to residual strength tests results, it has to be pointed out
that it was needed to use the generalized Hoek-Brown failure criterion to fit the residual strength
results of all the tests. The residual strength increased as confining stress increased, but it did not
show any clear dependence with structure. Residual strength remained the same when increasing
jointing, only a slight trend towards higher values of the residual strength of jointed specimens
compared to intact ones was observed when increasing confinement.

It is also remarkable that the stress-strain curves of the jointed specimens tended to mimic
those of the intact specimens starting from certain points of the softening part of the axial stress-
axial (and radial) strain.

Drop modulus, or slope of the softening part of the axial stress-axial strain curve was recovered
when possible and some challenges arose. First, this parameter does not seem to remain constant
during the softening process, so a more precise definition of this parameter could be convenient.
Second, although the unloading-reloading cycles were intended also to better control this
softening phase, the fact is that they introduce some uncertainties in the stress-strain path that
make even more difficult the acquisition of this parameter.

Obtaining dilation angle during strength tests was meant to be one of the main goals of this
dissertation, and it has been achieved in a significant manner. This parameter showed its already
acknowledged dependencies (it diminishes when confining stress, plasticity or scale/structure
increases).

Three variable dilation angle models were fitted to the results and the strengths and weaknesses
of each model were identified. Alejano & Alonso (2005) model was not able to correctly predict
the peak dilation angle although it correctly captured the decay with plasticity and confinement.
Zhao & Cai (2010a) model correctly captured dilation angle variation as also did Walton &
Diederichs (2015a) model, but that of Zhao & Cai presents some inherent difficulties associated
with the physical meaningless of the parameters and the non-univocal solution.

But dilation angle itself is not enough to simulate post-failure behavior of a strain-softening
material like rock or rock mass. In addition, to fully characterize this behavior, a model that also
links stresses with strains in post-failure phase is required.

With the aim of creating a model capable to simulate the stress-strain response, a mathematical
equation was fitted to the tests data. It was then implemented in numerical code (FLAC) to
simulate the strength tests, in order to validate its utility. Although the simulation does not exactly
replicate the tests results, we obtained much better results than the commonly used approaches.
Problems associated to numerical bifurcation and localization were identified, but their study falls
well beyond the scope of this study.

Finally in this Ph.D. thesis and with the aim of highlighting the relevance of post-failure
behavior of rocks for practical applications, a deep tunnel was modelled using different rock mass’
post-failure behavior approaches (different rock mass’ geotechnical qualities and with or without
considering variable dilatancy). The results of this part of the thesis show that the use of variable
dilatancy modifies the amount of deformation in the tunnel, but, on the other hand, it does not
significantly affect the extent of the yielded zone.

Detailed conclusions relating the individual developments of this doctoral work can be found
at the end of every chapter of this dissertation.

As a final statement, the real significance of this thesis as contribution to rock engineering
discipline can be abstracted as a couple of steps towards a better understanding and insight on the
post-failure (particularly volumetric) behavior of rock and rock masses in terms of experimental
results and small-scaled rock mass testing. This was materialized in a few papers on the most
relevant rock mechanic scientific journals (IJRM&MS, RM&RE) and technical symposia
(EUROCK, ARMA, ISRM).
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10. Future research lines

Some ideas concerning future developments are stated in the following lines:

*  To perform more strength tests on intact and jointed specimens and at different scales of
other type of rocks, in order to confirm all the results derived from this thesis.

e To deeper study the drop modulus, defining it in a more precise way, indicating a correct
way to measure it and trying to obtain a model that correctly describes this parameter and its
dependencies, since it is one of the key aspects to define post-failure behavior (like Young’s
modulus is one of the key aspects to define elastic behavior).

*  To study the stress-strain curves of the jointed and intact specimens in terms of energy,
since it could explain the decrease in strength and in Young’s modulus of the jointed specimens
with respect to the intact ones.

*  To extend existing models or provide new ones to implement dilatancy and post-peak
behavior of rocks and rock masses.

* To extend the experimentation to larger scales, in order to check in detail the scale
problem (not only the structure problem). For instance and to say it in a few words, it could be
possible to install extensometers in a pillar of an underground mine and measure the deformations
as the excavation develops.

*  To implement these behavior models in numerical modelling software, first trying to
simulate the laboratory strength tests in a more precise way than showed in this dissertation and
later extending the simulation to larger scales (pillar and rock mass scales).

149



150



Publications totally or partially derived from this
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Appendix A.Complete development of the strains

relationship

Traditional approaches to estimating the radial strain starting from the axial and volumetric
strain are reflected in:

&,—¢€
E,=¢€+2€ > & = V2 : (A1)

Consider the model of deformation of a cylindrical sample as seen in Fig. A.1.
¥ 7

P EEm - . . . . . . - .

N
A 4

R AR

Fig. A.1. Unconfined test diagram, idealized deformational behavior and notation used.

The volumetric strain can be accurately calculated as sample volume change in relation to the
original volume of the sample:

Ay LaR - (L-AL)7(R+AR) |

g = (A.2)
4 LzR’
By developing the terms in this equation we obtain:
AV 2AR AR® AL (2AL AR AL AR’
g =AY _ 2AR AR AL (20L AR [AL AR (A3)
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And, considering the definition of strain terms in a cylindrical sample test:
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The following expression is obtained:

g =26 & +&+268 &6 (A.5)
Which can be represented as a quadratic equation:
0=(g-¢)+2(1-¢)&—(1-¢)& (A.6)
It can easily be solved as follows:
2
2(1-g)t\d(1-) +4(1-2)(sa-2,) [z
& = SE: (A7)
2(1-¢) 1-¢
Since the positive root has no physical meaning, the final valid equation remains:
l-¢,
&=1- (A.8)
1-¢

1
It is important to note that Eq. (A.1) will be produced if second and third order infinitesimal
terms are rejected during development of the equation.

If the two formulations are compared, a slight difference can be observed at very high strain
levels, as depicted in Figure A.2. This difference is not relevant in this study, so the simplified
formulation was used to obtain radial strain.

A5 TRX (4 MPa)

—Rough radial strain —True radial strain
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Fig. A.2. Comparison between approximate and true formulations for deformation model.
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Appendix B.Tables of tests results

Table B.1. Summary of results of elastic, strength and post-failure parameters obtained for each tested
specimen of the Amarelo Pais granite.

5 %
Q = =y o -~ A
: E % z % & F. 8 #. 2
= 5 g = 5 =z & N £ 3
15) a 9 =] E =0 @
. £ : % £z 77 ZFa5 § =D iz
5 2 & B 8233 E2FF f 2% A8
A1RCS 5440 107.05 0 77.50 - 21.67 0.13 14.51 --
A2RCS  54.05 109.40 0 84.64 - 2236 0.19 1547 --
A3 RCS 5440 111.70 0 76.66 2 17.63 0.20 13.86 --
A4 RCS 5440 111.10 0 75.60 5 2292 0.18 -- --
3 A5RCS 5440 109.15 0 80.34 2 2027 0.15 14.16 --
& A6 RCS 54.05 109.70 0 76.91 2 18.59 0.18 13.60 --
§ A7RCS 5440 110.40 0 68.47 - 17.60 0.21 13.27 --
5 A8 RCS 5440 110.70 0 77.19 2 19.30 0.17 13.67 --
A9RCS 5440 108.00 0 74.85 2 1897 0.17 13.46 --
A1I0RCS 5440 107.30 0 76.17 - 1635 0.19 11.16 --
A11 RCS 54.55 106.00 0 80.08 - 1595 0.16 11.53 --
A12RCS 5330 105.40 0 74.74 1 16.00 0.15 11.17 -19.11
A1 TRX  54.00 99.70 2 13042 32 3054 0.19 1733 -17.39
A2 TRX 5440 99.65 2 117.33 30 2340 0.19 1426 -16.00
A3TRX 5440 99.55 2 112.29 27 2232 022 1337 -16.67
A4TRX 5440 98.65 2 11031 31 2395 020 1558 -17.65
ASTRX 5445 99.00 4 13420 44 2506 0.19 1433 -21.06
A6 TRX  54.40 100.05 4 130.02 43 2436 022 1623 -17.39
A7TRX 5440 99.55 4 129.89 54 2525 020 1620 -17.15
- A8 TRX 5440 98.00 4 129.50 46 23.84 0.22 1431 -22.10
:5: A9 TRX 5440 98.20 6 15390 51 2748 021 1749 -21.05
£ A10 TRX 5440 99.50 6 170.72 45 30.02 0.21 16.55 -19.55
O AlIITRX 54.15 9995 6 175.43 48 30.01 0.20 18.05 -19.05
A12 TRX 5440 100.50 6 169.00 51 3040 0.18 19.15 -17.57
A13TRX 5440 10030 10 19275 80 28.06 0.22 17.20 -19.03
Al14 TRX 54.05 100.05 10 21399 75 3549 0.19 21.34 -21.69
A15TRX 5440 99.80 10 200.71 87 33.69 0.15 20.09 -21.74
Al6 TRX 5440 101.00 10 193.09 68 2945 021 17.67 -20.18
A17TRX 5440 99.60 12 21499 81 3120 0.20 19.12 -18.52
A18 TRX 5440 100.10 12 230.14 80 36.08 0.20 21.33 -20.00
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Table B.2. Summary of results of elastic, strength and post-failure parameters obtained for each tested
specimen of the Vilachan granite.

z 6 = § bW R %
g E g 5 5 & 2z £ S5 3
= 5 £ g 5 — ?: =] e >? =] S
§ 2 E 5 £ 2 25 §S § S E_
C1RCS 54.15 109.40 0 127.45 - 2727 0.11 19.50 -
C2RCS  54.10 10885 0 11692 - 2584 017 1811 -
C3RCS 5415 11060 0 11417 - 2292 — 1464 -
C4 RCS 54.10 109.50 0 121.22 -- 23.09 0.19 16.75 --
9 C5RCS 5415 111.10 0 119.09 - 2553 0.5 1882 -
£  C6RCS 5410 10875 0 10430 - 21.13 0.17 1445 -
§ C7RCS 54.15 109.60 0 129.18 - 23.51 0.12 17.67 --
5 C8 RCS 54.10 109.70 0 117.96 - 23.07 0.28 18.42 --
CI9RCS 54.10 110.00 0 113.53 -- 21.88 0.19 15.65 --
CIORCS 5410 10955 0 10661 - 21.03 0.14 1478 -
CIIRCS 5410 10990 0 113.60 - 2409 020 1776 -
CI2RCS 54.10 111.55 0 108.77 -- 2239 0.11 15.09 --
Cl1 TRX 54.10  99.10 2 146.25 - 24.00 0.11 15.83 -13.37
C2 TRX 54.15  98.65 2 14199 40 23.16 0.17 14.05 -15.32
C3 TRX 54.10  99.10 2 140.91 34 2445 020 1561 -1797
C4 TRX 54.10  99.00 2 146.13 36 24.14 022 16.06 -18.18
C5TRX  54.10 100.10 4 16953 52 2941 0.17 19.00 -15.68
C6 TRX 5410 9995 4  160.13 53 27.82 0.18 17.96 -19.05
C7TRX 5415 9980 6 18576 50 2927 - 1870 -15.29
=9 C8TRX 5415 9915 4 16101 43 2721 022 1790 -15.49
S COTRX 5415 9950 4 16088 35 27.04 020 1808 -20.07
S CIITRX 5410 9930 6 187.84 49 2779 0.9 1871 -19.17
CI2TRX 5410 10085 6 19546 47 3170 0.18 19.68 -19.05
CI3TRX 5410 9990 10 239.61 71 33.10 020 2035 -22.03
Cl4TRX 5410 9985 10 24122 70 3485 0.8 2071 -21.51

CI5TRX 54.15 10150 10 209.77 64 27.82 021 17.63 -22.72
Cl6 TRX 54.15 100.15 10 231.61 63 3023 0.17 1923 -19.84
Cl17 TRX* 54.15 10190 15 26622 -- 3212 0.14 19.52 --
CI8 TRX* 54.10  99.60 15  259.45 -- 3129 0.19 18091 --

* These tests overpassed the confining stress limit of the press, blocking the confining stress system after
specimen failure, so there are no values for post-peak parameters.
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Table B.3. Summary of results of elastic, strength and post-failure parameters obtained for each tested

specimen of the Carrara marble.

2 £ z = S u K
= 5 A=) g 5 — Tae 2 2a B
o ot < g 2 g cEQ g 19 E
g f S 0% S2E <& TE b5 Z 5% =2
g2 A 83 82 £2 2282 £ &E &¢
CMI 5400 97.10 0 9506 - 4588 0.1 3526 -21.71
2 CM2 5400 9915 0 9165 - 5034 0.8 3451 -22.68
£ CM3 5390 9610 0 8993 - 4051 026 3450 -19.91
S CM4 5390 99.15 0 9317 - 4203 017 37.94 -23.00
S CM5 5390 9830 0 9554 - 4652 016 3392 -20.68
CM6 5390 9645 0 9804 - 4230 0.5 3527 -1620
CM7 5390 9600 1 9528 19 4691 020 3611 --12.18
CM8 5390 9790 1 9615 9 4594 0.5 3386 -14.64
CM9 5390 9745 1 9313 12 4605 0.4 3463 -10.70
CMI0O 5390 97.60 2  100.14 18 4597 0.1 3612 -8.37
CMIl 5400 99.15 2 9973 18 4649 0.5 3834 -9.00
CMI2 5390 9545 2 10155 25 4617 0.6 30.79 -12.04
CMI3 5390 9495 4 10347 33 4385 0.15 2876 -7.50
~ CMI4 5390 9535 4 10290 32 4434 0.0 3177 -10.24
£ oMIS 5390 9815 4 10772 35 4567 017 3729 -6.55
S CMI6 5390 9830 6 11202 35 4663 0.4 2899 -1422
O CMI7 5390 9745 6 11215 37 4850 0.5 2451 -8.74
CMI8 5390 9550 6 10970 42 4568 0.15 29.66 -5.98
CMI9 5390 9720 8 11320 45 4781 0.15 2842 -
CM20 5390 9595 8 11723 46 4840 0.14 29.03 -11.27
CM21 5390 9800 10 12070 57 5503 0.8 2630 -5.62
CM22 5390 9865 10 11973 64 525 0.7 3509 -4.49
CM23 5390 9505 12 12578 68 5208 0.17 27.75 -12.68
CM24 5390 97.75 12 12341 67 5174 0.2 3246 -6.54
CM30 5390 97.15 12 12889 68 5232 0.17 20.54  -9.40
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Table B.4. Summary of results of elastic, strength and post-failure parameters obtained for each tested
specimen of the Indiana limestone.

= E -~ = = g £ 2 P E
E g £ g B = S5 & 3245 3
o 5 E g S 2z E o L >? A~ —8
= k5 = 2 = g S g g = g S
Q g g 0 ‘é g g < S g 2 5.3 oS
= £ & B 52 FE £3EF% & 3% Ac¢
IBL-1 54.17  99.84 0 60.18 -- 2480 0.10 21.83 --
IBL-2 54.14  99.85 0 61.64 26.18 0.10 22.43 --
- IBL-3 54.16 9991 0 62.29 2 24.19 0.11 20.58 --
= IBL-4 54.14  99.81 0 59.86 3 2588 0.17 21.35 --
= IBL-5 5413  99.82 0 61.88 -- 2678 0.14 20.33 --
§ IBL-6 54.14  99.83 0 60.94 3 22.48 0.14 20.28 -
= IBL-7 54.14  99.88 0 59.77 - 2651 0.09 21.74 --
IBL-8 54.13  99.89 0 59.14 1 2445 0.12 19.92 --
IBL-9 54.16  99.89 0 60.68 -- 2086 0.17 21.81 -65.92
IBL-10 54.16  99.90 0 61.98 3 2472 0.15 20.88 --
IBL-11 54.16  99.88 1 72.84 18 2626 0.11 21.07 -27.45
IBL-12 54.15  99.84 1 65.93 18 2476 0.19 19.18 -47.77
IBL-13 54.06  99.89 1 64.83 17 2437 0.16 19.76 -30.18
IBL-14 54.08  99.85 2 73.40 18 2525 0.18 1936 -27.76
IBL-15 5398  99.90 2 69.17 21 2454 0.14 19.60 -25.69
IBL-16 54.02 99.82 2 71.12 23 25.04 0.17 1885 -44.04
IBL-17 54.11  99.84 4 76.58 27 2495 020 19.69 -22.93
IBL-18 54.14  99.81 4 76.28 32 2500 0.19 1883 -21.07
- IBL-19 54.13  99.84 4 76.09 33 2519 0.13 19.19 -38.26
:5: IBL-20 54.14  99.80 6 87.44 47 28.69 0.17 1891 -10.31
s IBL-21 54.16  99.90 6 87.46 60 27.88 020 1872 -16.45
© IBL-22 54.09  99.88 6 85.30 47 2758 0.16 1941 -21.63
IBL-23 54.18  99.92 8 91.52 60 2559 0.17 1857 -7.46
IBL-24 53.97  99.86 8 89.92 60 2689 0.19 19.04 -24.89
IBL-25 54.17  99.89 8 92.29 63 2651 0.18 1870 -15.38
IBL-26 53.96 99.81 10 93.19 68 2515 0.14 1754 -16.44
IBL-27 54.02  99.86 10 94.16 66 2525 0.13 1810 -6.67
IBL-28 54.18  99.85 10 97.85 70 26.04 0.17 1831 -9.71
IBL-29 54.18  99.83 12 98.42 67 2564 0.16 1739 -21.13
IBL-30 54.01  99.86 12 93.97 70 2468 0.14 1849 -591
IBL-31 53.96  99.80 12 93.23 73 2446 0.17 17.60 -9.22
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Table B.5. Summary of results of elastic, strength and post-failure parameters obtained for each tested

specimen of the Toral de los Vados limestone.

::" - ©n
= g -~ = g g £ 2w E
S E g 5 50 = °©5 g =R E
- = g g 5 Z ~ & NG ><3 == —8
o T s £ Z S §2 § L2 &
s £ g H SF £ 22 b2 2 E=  =F
= £ & 2 82 EZ £33 Eg & 38 A9
iy CTV1 5445 99.60 0 148.89 - 46.13 0.04 39.55 --
g CTV2 5440 97.20 0 112.55 -- 3996 0.11 3697 -24.10
2 CTV3 5440 100.10 0 102.35 13 3589 0.11 2842 --
= CTV4 5435 10000 0 108.71 9 43.67 0.08 35.64 --
CTV21l 5440 99.45 0 125.37 12 40.64 0.15 34.10 --
CTV5 5440 99.75 2 108.38 42 5696 0.17 3494 -8741
CTV6 5440 99.15 2 150.76 31 59.30 0.06 49.31 --
CTV7 5440 98.10 2 143.57 27  61.72 0.15 49.73  -49.61
CTV8 5435 101.60 4 174.31 38 6134 0.18 5046 -31.08
CTV10 5430 100.80 4 120.13 32 48.10 0.19 4326 -18.33
- CTVIl 5440 10040 4 144.39 42 4785 0.18 3835 --
%’ CTVI12 5440 99.15 6 162.67 55 5410 0.15 3843 --
L'g CTV13 54.40 99.80 6 149.47 47  58.15 0.17 46.63 --
© CTVI14 5440 101.60 6 195.16 41 60.79 021 48.55 --
CTV15 5440 99.60 8 196.28 57 5459 02 4192 -36.64
CTV16 54.40 99.70 8 203.12 69  60.22 0.18 46.55 --
CTV17 54.40 10045 10 168.27 8 5768 0.17 39.62 -57.39
CTV18 54.40 100.80 10  219.08 69 59.75 0.15 4644 -41.42
CTV19 5440 10040 12  215.08 72 60.62 0.14 4720 -24.64
CTV20 5440 101.05 12 233.15 79  51.87 0.15 41.04 --
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Table B.6. Summary of results of elastic, strength and post-failure parameters obtained for each tested
specimen of the Noia gneiss. Observe that this rock should be classified as Class Il (Hudson et al., 1972)
due to its brittleness (results of drop modulus > 0, marked in bold in the table).

= .,
e E 2 =« = B E_ & »_ %
= = E : 2 3 £F B 2F %
= 5 < 5 8 = =5 2 =5 g
o S < = @ = 5 g - 2 S
g £ e B S =& PE %5 2 5= =2
> 2 & 8 82 &2 22 £ & g& &¢
GN2 5490 100.00 2 285.99 26 51.62 0.14 47.08 -162.52
GN3 53.80 10090 2 259.23 39 52.00 0.07 4348 580.14
GN4 53.70 100.20 2 308.19 36 53.68 0.09 4356 241.36
GN5 5490 101.50 4 317.29 48 5521  0.06 4598 -89.87
GNo6 53.90 99.20 4 286.23 45 53.66 0.12 4645 -32.18
GN7 55.00 99.40 4 332.09 68 5344  0.12 47.08 129.36
E GNS8 5490 100.10 6 340.78 68 5496  0.09 46.81 57.90
b= GN9 53.90 98.60 6 299.33 61 53.53  0.07 47.00 61.61
8 GNI10  55.00 99.00 6 336.14 73 56.58 0.09 47.80 57.71
GN22* 55.00 10020 12  405.96 - 3326  0.13 44.08 --
GN23* 5390 101.50 10 367.83 -- 48.70  0.15 46.53 --
GN24*  53.60 100.80 8 351.04 -- 4796  0.15 44.85 --
GN25 55.00 98.50 6 313.15 73 56.82  0.09 4374 -267.09
GN26  55.00 100.70 4 344.74 - 57.87 0.10 51.09 -38.80
GN27 5470 10090 2 289.75 27 52.31 0.09 46.38 -121.98

GN28  55.00 99.40 271.61 62 60.63  0.10 4395 -64.73

o

* These tests overpassed the confining stress limit of the press, blocking the confining stress system after
specimen failure, so there are no values for post-peak parameters.
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Table B.7. Summary of results of elastic, strength and post-failure parameters obtained for each tested
specimen of the Touro amphibolite.

%{) n:D «n *

o = ) - 17}

= 5 £ g 5 — mE e S A g

2 15 = & = g :g g 4—*9 g
s £ £ % £F g EF %2 2 55 a7
= 2 & B &2 Bz B2 E: & 3& &c¢
iy ANF18 54.20 107.9 0 84.47 - 14.50 0.08 11.13 -12.74
g ANF19 54.20 107.2 0 102.07 -- 17.16 0.09 14.04 -14.59
2 ANF20 5430 107.65 0 99.67 -- 21.38 0.05 16.28 -9.40
= ANF21 5400 10130 0 118.72 - 29.52  0.12 20.64 -5.39
ANF22  54.05 100.20 0 115.32 -- 2482 0.11 19.22 --
ANF1 54.30 100.00 2 99.58 18 28.53 0.16 22.07 -9.31
ANF2 54.50 99.80 2 134.69 23 30.11 0.14 21.78 -11.96
ANEF3 53.00 99.50 2 151.12 18 2696 0.13 22.33 -16.71
ANF4 54.15 99.85 4 159.27 45 29.63 0.15 21.36 -20.93
ANF5S 54.50 97.20 4 14695 30 2793 0.18 2245 -12.60
- ANF6 54.50 100.2 4 15196 30 31.02 0.18 2297 -22.30
°§ ANF7 54.50 99.45 6 176.44 40 33.40 0.14 26.28 -20.54
L'g ANFS8 54.50 100.45 6 130.53 44 31.42 0.17 12.85 -17.08
O ANF9 54.15 100.55 6 136.53 44 2383 0.16 18.23 -14.34
ANF10 54.50 100.70 10 145.10 50 31.27 0.18 24.29 -14.92
ANFI11 54.55 99.45 10 169.35 60 31.39 0.18 20.13 -12.89
ANF12 5420 101.10 10 149.23 60 2275 0.18 16.00 -13.86
ANF13 54.50 99.65 12 160.75 57 3235 0.15 27.24 -39.10
ANF14 54.50 99.65 12 196.71 58 33.17 0.13 23.18 -18.27
ANF15 54.05 101.10 12 185.45 66 31.96 0.19 25.82 -21.21

171



Table B.8. Summary of results of elastic, strength and post-failure parameters obtained for each tested
specimen of the Blanco Mera granite.

*ﬁ »
~ V)] en »n *
g = - e § £ g 2
S g = 50 = &~ &8 S5 B
bt g = @ - g I oL S
= 5} = o = =0 D > S o
Q o = *:7; =] = N— g = E
2 £ £ & £ wf 22 %5 2 5= g%
o Q R =} < 1) =8 .2 o3 o~
S A & S 22 Z2E8E & 38 8¢
B1 RCS 54.30 109.45 125.77 - 33.11 0.15 27.01 -
3 B2 RCS 54.40 109.70 116.5 - 33.83 0.18 24.70 -
é B3 RCS 54.40 109.60 110.18 -- 2948 0.15 23.21 -
§ B4 RCS 54.40 109.20 100.48 - 27.63 0.10 20.93 -
5 B5 RCS 54.40 110.10 121.32 - 34.14 0.17 2642 -
7 B6 RCS 54.40 110.70 79.26 - 2944 -- 18.20 -
g B7 RCS 54.40 111.60 84.57 2 2540 0.16 19.81 -
G B8 RCS 54.40 109.15 110.77 - 33.66 0.14 24.30 -
§ B9 RCS 54.40 110.00 106.66 - 25.17 0.08 18.79 -
g BIORCS 54.15 107.60 118.26 - 3326 0.13 22.58 -
E B11RCS 5440 111.20 111.43 - 31.64 0.16 24.24 -
BI12RCS 54.40 106.60 125.34 - 30.88 0.10 25.71 -

B1TRX  54.40 100.70
B2 TRX 5440 98.95
B3TRX 5425 100.25
B4 TRX  54.40 100.50
B5TRX 5440  99.00
B6 TRX 5440 99.40
B7TRX  54.40 100.60
B8 TRX 5440 98.10
B9 TRX 5440 99.20
B10 TRX 54.20 100.20
B11 TRX 5440 98.70
B12 TRX 54.40 99.25
B13 TRX 5430 98.10
B14 TRX 5425 96.70
BI5TRX 5440 99.10
B16 TRX 54.40 100.50
B17 TRX 54.40 100.10
B18 TRX 54.40 98.50
B19 TRX 54.25 100.05

187.03 30 4286 0.16 31.81 -25.00
183.41 42 4419 0.17 33.56 -21.05
172.44 40 4218 0.16 31.92 -23.52
177.82 34 43.07 0.18 3280 -18.47
216.71 38 4586 0.15 3445 -18.38
21258 50 4282 0.16 3393 -17.24
196.84 52 42.65 0.18 3142 -21.52
214.13 54 4555 0.17 3455 -22.72
23539 65 4286 0.18 32.61 -24.46
22820 51 4341 0.18 3342 -20.83
21835 70 44.10 0.17 34.77 -17.24
240.16 74 45.17 0.20 33.83 -18.97
28230 93  47.28 0.15 36.13 -22.05
252.18 74 4149 0.21 2832 -22.56
25922 115 46.17 0.16 3337 -21.74
269.80 85 47.12 0.17 31.15 -22.25
311.62 180 46.96 0.18 34.58 -21.82
307.62 112 4826 0.15 3641 -19.76
291.80 82 44.66 0.17 33.50 -24.88

Intact specimens. Confined

gggggss;ggggc\@o\@#b##mwwwoooooooooooo Confinement

BM1 54.15 101.30 13244  -- 3880 0.14 2727 -9.02
BM2 54.15  99.05 107.69  -- 2588 0.29 19.80 -15.24
BM3 54.10  99.65 134.51 -- 3918 0.20 2840 -20.18
BM4 54.30  100.00 136.37 - 3874 024 20.75 -13.71
BM5 54.10 100.20 13207 14 3774 0.14 2527 -21.83
BM6 5415 9920 02 13756 - 3955 0.16 2859 -10.20
BM7 54.15 9990 02 131.83 13 38.18 0.08 2694 -8.36
BMS 54.15  99.60 0.2 12645 9 3389 0.11 2133 -21.56
BM9 54.15 9420 0.2 14321 - 3748 0.17 20.45 --

BM10 54.15 10040 0.2  91.53 12 2246 023 16.13 -14.28
BMI11 54.15 100.40 4 148.2 60 25775 020 19.58 -12.17
BM12 54.15 100.10 0.2  93.05 10 27.52 0.18 17.35 -17.30
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Table B.8 (cont.). Summary of results of elastic, strength and post-failure parameters obtained for each
tested specimen of the Blanco Mera granite.

e B - . = 2 2 g w %
S & = 5 = & 55  E S5 3
= 5 £ g 5 — = 2 =85 2
2 © = 2 = 8 S g g - g g
2 g £ B0 “E 55 E < E &h 2 8 < 5
= £ & & &2 332 EZ &g = 48 Ac¢
BM13 53.9 100.8 2 154.62 28 3776 0.18 25.68 -23.94
BM14 5390  99.60 2 16439 25 3842 020 26.66 -17.93
- BM15 5390 100.10 2 152.73 - 3796 020 2515 -19.59
o BM16 53.60 10190 2 15538 32 37.69 0.17 2558 -31.04
b= BM17 54.00 100.60 4 17845 50 4245 0.19 2999 -2486
S BM18 53.55  99.60 4 176.58 53  40.50 0.21 3049 -11.39
4 BM19 53.60  99.00 4 185.87 45 4324 0.17 27.67 -17.26
g BM20 53.75 9945 6 21427 60 4523 0.19 3040 -31.24
3 BM21 53.80 100.95 6 227.03 55 4498 0.18 31.02 -19.17
& BM22 53.70  99.30 6 22059 67 4332 0.14 30.67 -16.92
9 BM23 53.80 10020 10 254,57 80 4395 0.13 31.77 -21.74
= BM24 5380  99.60 10 246.52 65 4476 0.13 32.06 -22.15
BM25 53.55 99.80 12 29185 95 4692 0.12 3340 -26.65
BM26 53.85 10050 12 268.67 76 46.06 0.16 33.64 -24.67
BM27 53.55  99.65 12 292,11 120 48.84 0.16 33.61 -19.57
BM28 5370  99.85 12 289.11 90 4854 0.14 3398 -
BMDI 5405 10320 6 14487 76 2045 023 1236 -19.67
BMD2  53.80 10395 2 6634 35 1430 039 878  -8.64
BMD3 5410 10175 05 4424 20 946 018 524 -2.13
BMD4 5400 10320 0.5 60.17 20 7.62 0.2 675 -1827
BMD5 5410 9405 05 5020 20 893 008 498  -5.92
T BMD6 5410 10100 1 6934 25 995 0I5 751 -
£ BMD7 5410 9890 1 6290 20 1225 027 828  -7.64
S BMDS 54.15 101.00 1 79.94 20 14.16 024 983  -14.05
% BMD9 54.10 103.60 2 94.66 33 1603 0.14 9.06 -8.17
§ BMDIO 5415 10190 2 96.09 40 1421 026 1097 -6.33
% BMDI1 54.15 10150 4 108.12 60 1423 0.13  9.68 -6.22
2 BMDI2 35415 10185 4 137.08 65 2261 022 1655 -10.92
—’: BMD13 5340 101.60 4 129.13 33 17.85 0.11 1321 -14.60
= BMDI14 5430 10125 6 129.63 68 1793 0.10 11.12 -9.32
S BMDI5 5390 101.95 6 15633 73 2345 0.09 17.19 -57.37
EE BMD16 53.25 103.10 10 193.13 105 27.07 0.12 19.12 -40.55
— BMDI17 5415 10455 10 16514 120 1649 0.11 11.69 -19.16
BMDI18 54.10 102.10 10 21638 100 27.84 0.18 19.74 -25.05
BMD19 54.00 102.70 10 177.76 80 24.01 0.11 1949 -8.99
BMD20 5335 98.90 12 21030 130 2459 0.15 18.69 -26.69
BMD21 5330 10420 12 17551 110 1484 0.13 11.57 --
BMD22 53.85 102.35 12 21335 115 2694 0.09 18.61 --
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Table B.8 (cont.). Summary of results of elastic, strength and post-failure parameters obtained for each
tested specimen of the Blanco Mera granite.

s o

= o0 o0 NG *

: E 2 = = 5 5_ £ ®_ z

5] = = o %0 = >o_‘ = = g = _g

= 5 A = 5} — A g A 3
, £ 2 § £5 3 2F 55 3 I is
o Q S =) < @ =8 A SIS o A
& 2 A 5 S22 22 Z2E&e & 48 AQ
JBM1 54.00 100.15 1 40.83 23 777 033 648 -13,21
JBM2 54.00 100.50 2 62.31 33 9.04 024 656  -825
JBM3 54.05 10045 4 75779 49 11,6 0.19 869 -474
JBM4 53.70  97.90 6 9696 70 1239 0.25 8.03 -2,72
JBMS5 5395 9710 10 115.62 103 13.04 0.18 1034 -241
JBM6 53.80  98.60 1 60.53 21 93 046 6.13 -12,35
JBM7 5345 101.70 12 153.18 105 16.55 0.18 1286 -3,41

JBMS& 53.80 102.10 2 58.86 35 979 021 7.26 -6,27
JBM9 53.65 101.70 4 92.32 53 1223 031 8.88 -5,88
JBM10 54.00 101.05 6 90.95 67 12.05 0.33 9.03 -2,69
JBM11 53.65 100.00 10 137.04 97 16.85 0.13 1336 -3,52
JBM12 54.00 10090 12 13924 115 1634 0.15 1275 -5,50
JBM13 53.55 98.35 2 80.37 30 1594 0.18 11.74 -12,58
JBM14 53.10 100.60 2 75.86 29 1338 028 9.76 -18,1
JBM15 53.45 100.50 6 119.04 65 16.82 0.16 12.61 -133
JBM16 53.60  99.75 6 81.72 65 1491 0.09 1198 -5,60
JBM17 53.80 98.60 10 12242 83 1577 0.11 1048 -535
JBM18 53.40 98.35 10 11096 -- 1636 0.1 12.04 -585
JBM19 53.65 97.30 12 196.27 117 2632 02 1843 -13,15
JBM21 53.65 99.75 12 166.59 125 2233 0.13 1582  -6.63

(2+3) jointed specimens. Confined
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Appendix C.Examples of FLAC models.

C.1. Example of a FLAC model like those presented in chapter 7, that corresponding to an

Amarelo Pais granite specimen, a confining stress of 6 MPa and a mesh size of 40x80.

Triaxial tests of strain-softening material (Granite Amarelo Pais 54
; mm tests results) small grid considered 0.054m * 0.1m cylindrical sample
; with controlled velocity. The dilatancy model is included
title
Triaxial test of strain-softening granite rock (conf. 6 MPa)
24080
gen 0,0 0,0.1 0.054,0.1 0.054,0 i=1,41 j=1,81
mo ss
call servo.fis
call DIL_Amarelo_Pais.fis
fixyjl
ini yvel -2e-7 j 81

pro den 2610 bul 1.26398e10 sh 9.87815e9 co 10e6 fri 46 ten 6.65¢6 dil 40

pro ftab 1 ctab 2

table 1 0.0,46.0 0.001561,51.003427 0.002087,53.067107 0.002610,53.998869
table 1 insert 0.003129,54.272879 0.003646,54.120568 0.004161,53.671774

table 1 insert 0.004674,53.007067 0.005186,52.182194 0.005696,51.237935

table 1 insert 0.006205,50.207356 0.006713,49.117719 0.008231,45.722388

table 1 insert 0.009741,42.518628 0.011245,39.837874 0.012744,37.812937

table 1 insert 0.015234,35.769639 0.017718,34.862937 0.025157,34.444940

table 1 insert 0.035088,34.507759

table 2 0.0,10.0e6 0.001561,13.873932e6 0.002087,15.148380e6 0.002610,16.017942¢6
table 2 insert 0.003129,16.597884¢6 0.003646,16.961622¢6 0.004161,17.159073¢6
table 2 insert 0.004674,17.223110e6 0.005186,17.180602¢6 0.005696,17.054642¢6
table 2 insert 0.006205,16.859609¢6 0.006713,16.609078e6 0.008231,15.628013e6
table 2 insert 0.009741,14.466445¢6 0.011245,13.284131e6 0.012744,12.193184¢6
table 2 insert 0.015234,10.736367¢6 0.017718,9.763050e6 0.025157,8.646159¢6
table 2 insert 0.035088,8.450027¢6

app pres 6e61 1

app pres 6e6 141

ini sxx -6€6 syy -6e6 szz -6e6

app yvel -2e-7 j 81

def sigmav
sum=0.0
loop i (1,igp)
sum=sum-+yforce(i,jgp)
end loop
sigmav=sum/(x(igp,jgp)-x(1.jgp))
end
def evaxi
evaxi=(ydisp(21,1)-ydisp(21,81))/(y(21,81)-y(21,1))
end

def evtrans
evtra01=-(xdisp(1,21)-xdisp(41,21))/(x(1,21)-x(41,21))
evtra02=-(xdisp(1,41)-xdisp(41,41))/(x(1,41)-x(41,41))
evtra03=-(xdisp(1,41)-xdisp(41,41))/(x(1,41)-x(41,41))



evtra04=-(xdisp(1,41)-xdisp(41,41))/(x(1,41)-x(41,41))

evtra05=-(xdisp(1,61)-xdisp(41,61))/(x(1,61)-x(41,61))

evtrans=(evtra0l+evtra02-+evtra03+evtra04+evtra05)/5
end

def evvol
evvol=evaxit+(2*evtrans)
end

hist sigmav

hist evaxi

hist evtrans

hist evvol

hist dilationi 1 j 40
hist dilation i 12 j 40
hist dilation i 21 j 40
hist dilation i1 40 j 40
hist dilation 140 j 1
hist dilation 140 j 12
hist dilation 140 j 21
hist dilation 1 40 j 36
hist dilation i 40 j 48
hist dilation 1 40 j 60
hist dilation 140 j 72
hist dilation 1 40 j 80
histyviljl

hist unbal

hist sh

set high unbal=2e4
set low_unbal=2¢3
set high vel=2e-7

set ns=10
set nsup=1500
supsolve

DIIL. Amarelo Pais.fis

; FISH funtion to define variable dilation angle
def cfi
loop 1 (1,izones)
loop j (1,jzones)
effsxx = sxx(i,j) + pp(i,j)
effsyy = syy(i,j) +pp(i,))
effszz = szz(i,j) + pp(i,j)
temp1=-0.5*(effsxx+effsyy)
temp2=sqrt(sxy(i,j)2+0.25*(effsxx-effsyy)"2)
s3=min(temp1-temp2,-effszz)
if $3<0.0 then
$3=0.0
end if
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a_dil=adill1+adil2*2.7182"(-(s3/1e6)/adil3)
b_dil=bdil1+bdil2*2.7182"(-(s3/1e6)/bdil3)
c_dil=cdill+cdil2((s3/1e6)"cdil3)

dexp 1=2.7182~(-b_dil*2000*(e_plastic(i,j)))
dexp 2=2.7182"(-c¢_dil*2000*(e_plastic(i,j)))



dilation(ij)=a_dil*b_dil*((dexp_I-dexp_2)/(c_dil-b_dil))

end loop
end loop
end

def supstep
cfi
if ns=0 then
ns=>5
end if
command
step ns
print k
end command
end

def supsolve

loop k (1,nsup)
supstep

end loop

end

set adil1=29.01
set adil2=28.05
set adil3=4.76
set bdil1=8.26
set bdil2=17.49
set bdil3=1.5
set cdil1=0.014
set ¢dil2=0.0749
set cdil3=0.711

set ns=15

set nsup=300
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C.2. Example of a FLAC model like those presented in chapter 8, that corresponding to a

strain-softening rock mass with GSI = 50 and variable dilation.
*chi-cast-SS-con-dil. DAT

Title

"Tunnel 1500 m deep GSI 50 SS - dil-p"
config axisymmetry

grid 70,90

model elastic

gen 0,-10 0,20 5,20 5,-10 ratl,l i=1,16 j=1,21
gen 0,20 0,35 535 520 ratl,095 i=1,16 j=21,36
gen 0,35 0,40 5,40 5,35 ratl,l i=1,16 j=36,51
gen 0,40 0,55 5,55 540 ratl,1.03 i=1,16 j=51,66
gen 0,55 0,75 5,75 5,55 ratl,l i=1,16 j=66,91

gen 5,-10 5,20 10,20 10,-10 rat1.03,1 i=16,31 j=1,21
gen 5,20 5,35 10,35 10,20 rat1.03,0.95 i=16,31 j=21,36
gen 5,35 540 10,40 10,35 rat1.03,1 i=16,31 j=36,51
gen 5,40 5,55 10,55 10,40 rat1.03,1.03 i=16,31 j=51,66
gen 5,55 5,75 10,75 10,55 rat1.03,1 i=16,31 j=66,91

gen 10,-10 10,20 20,20 20,-10 rat1.05,1 i=31,46 j=1,21
gen 10,20 10,35 20,35 20,20 rat1.05,0.95 i=31,46 j=21,36
gen 10,35 10,40 20,40 20,35 rat1.05,1 i=31,46 j=36,51
gen 10,40 10,55 20,55 20,40 rat1.05,1.03 i=31,46 j=51,66
gen 10,55 10,75 20,75 20,55 rat1.05,1 i=31,46 j=66,91

gen 20,-10 20,20 50,20 50,-10 rat 1,1 i=46,71 j=1,21

gen 20,20 20,35 50,35 50,20 rat1,0.95 i=46,71 j=21,36
gen 20,35 20,40 50,40 50,35 ratl,l 1=46,71 j=36,51
gen 20,40 20,55 50,55 50,40 rat1,1.03 i=46,71 j=51,66
gen 20,55 20,75 50,75 50,55 ratl,l i=46,71 j=66,91

his unbalanced

;MARCAR HISTORIA DEL CENTRO DEL TUNEL
his ydis i=1 j=26
his yvel i=1 j=26

; MARCA ESQUINA
his xdis i=11 j=26
his ydis i=11 j=26

; MARCA CONVERG
his xdis i=11 j=21

his xdis i=11 j=16

his xdis i=11 j=11

his xdis i=11 j=6

his xdis i=11 j=1

initial sxx -40.5¢6 syy -40.5e6 szz -40.5e¢6

;:CONDICION DE CONTORNO STRESS EN171 J91
fix yjl

179



fix x11

apply nstress -4.05E7 from 71,91 to 71,1
apply nstress -4.05E7 from 1,91 to 71,91

model elastic notnull
prop density=2700.0 bulk=5.83E9 shear=3.5E9 notnull
history 999 unbalanced

solve elastic
step 1000

ini xdis 0 ydis 0 xvel 0 yvel 0
model mohr ss notnull

prop density=2700.0 bulk=5.83E9 shear=3.5E9 ¢=5.692e6 ctable=1 =43 ftable=3 dil=5.37
ten=0.043e6 ttable=4 notnull

table 1 0,5.692¢6 0.0077,4.23¢6

table 3 0,43  0.0077,36.85

table 4 0,0.043e6 0.0077,0.0091e6

st st sfe s s sk sk sk sk s sk sk st sie s sfe sk sk sk sk sk sk sk sk sie s sk sk sk sk sk sk sk sk sk sie sk s sk sk sk sk sk sk sk sk sk sk sk sk skoskoskoskoskoskok ok

def cfi
loop 1 (1,izones)
loop j (1,jzones)

effsxx = sxx(i,j) + pp(i,j)

effsyy = syy(i,j) + pp(i,))
effszz = szz(i,j) + pp(i,j)

temp1=-0.5*(effsxx+effsyy)
temp2=sqrt(sxy(i,j)"2+0.25*(effsxx-effsyy)"2)
s3=min(temp1-temp?2,-effszz)

1f $3<0.0 then
$3=0.0
end_if

a_dil=adil1+adil2*2.7182/(-(s3/1e6)/adil3)
b_dil=bdil1+bdil2*2.7182*(-(s3/1e6)/bdil3)
c_dil=cdill+cdil2((s3/1e6) cdil3)

dexp 1=2.7182"(-b_dil*200*(e_plastic(i,j)))
dexp 2=2.7182"(-c_dil*200*(e_plastic(i,)))

dilation(i,j)=a_dil*b_dil*(dexp_1-dexp 2)/(c_dil-b_dil)
end loop
end loop
end

def supstep
cfi
if ns=0 then
ns=>
end if
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command
step ns
print k
end command
end

def supsolve

loop k (1,nsup)
supstep

end loop

end

set adil1=26.5
set adil2=16.7
set adil3=8.7
set bdill=10
set bdil2=16.1
set bdil3=3

set ¢dil1=0.014
set cdil2=0.08
set ¢dil3=0.14

set ns=15
set nsup=300

st st sfe sfe sfe sfe she she sie e sie sk st sfe sfe sfe sfe she she sk sie s sie st sfe sfe sfe sfe she she she sie sl sk sie st sfe sfe sfe she she she sk ske sk e st sfe sfe sfe sk sl sleskeoskeoskoskokeok

model null i=1,15 j=1,10
supsolve

model null i=1,15 j=10,15
supsolve

model null i=1,15 j=16,20
supsolve
step 1000

save ar-55-ss-dil-01.sav

model null i=1,15 j=21,25
supsolve

model null i=1,15 j=26,28
supsolve

model null i=1,15 j=29,31
supsolve

save ar-55-ss-dil-02.sav

model null i=1,15 j=32,34
supsolve

model null i=1,15 j=35
supsolve

supsolve

save ar-55-ss-dil-03.sav
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